How classical spacetimes could emerge from quantum gravity

Andrea Dapor
University of Erlangen-Nurnberg

SISSA, 14 June 2016
physical cosmology estimation of β conclusions

Outline

(1) introductiongeneralization to massive casephysical cosmologyestimation of βconclusions

Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

$$
H=H_{o}+\frac{N}{2 a^{3}} \sum_{k}\left[\pi_{k}^{2}+a^{4} k^{2} \phi_{k}^{2}\right]
$$

Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

$$
H=H_{o}+\frac{N}{2 a^{3}} \sum_{k}\left[\pi_{k}^{2}+a^{4} k^{2} \phi_{k}^{2}\right]
$$

Formally quantize the system (in harmonic time, τ, defined by $N=a^{3}$):

$$
\hat{H}=\hat{H}_{o} \otimes \hat{\imath}+\frac{1}{2} \sum_{k}\left[\hat{l} \otimes \hat{\pi}_{k}^{2}+k^{2} \hat{a}^{4} \otimes \hat{\phi}_{k}^{2}\right]
$$

acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {geom }} \otimes \mathcal{H}_{\text {matt }}$.

Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

$$
H=H_{o}+\frac{N}{2 a^{3}} \sum_{k}\left[\pi_{k}^{2}+a^{4} k^{2} \phi_{k}^{2}\right]
$$

Formally quantize the system (in harmonic time, τ, defined by $N=a^{3}$):

$$
\hat{H}=\hat{H}_{o} \otimes \hat{\imath}+\frac{1}{2} \sum_{k}\left[\hat{\imath} \otimes \hat{\pi}_{k}^{2}+k^{2} \hat{a}^{4} \otimes \hat{\phi}_{k}^{2}\right]
$$

acting on Hilbert space $\mathcal{H}=\mathcal{H}_{\text {geom }} \otimes \mathcal{H}_{\text {matt }}$.

Approx: no entanglement between geometry ($\left.\Psi_{\circ} \in \mathcal{H}_{\text {geom }}\right)$ and matter $\left(\varphi \in \mathcal{H}_{\text {matt }}\right)$

$$
\Psi(\tau)=\Psi_{o}(\tau) \otimes \varphi(\tau), \quad i \frac{d}{d \tau}\left|\Psi_{o}\right\rangle=\hat{H}_{o}\left|\Psi_{o}\right\rangle
$$

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\hat{\pi}_{k}^{2}+\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\hat{\pi}_{k}^{2}+\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on effective spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+N a k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left\langle\psi_{\circ}\right| \hat{a}^{4}\left|\Psi_{\circ}\right\rangle k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on effective spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+N a k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

Identification leads to

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\Psi_{\circ}\right| \hat{a}^{4}\left|\Psi_{0}\right\rangle k^{2}
$$

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left\langle\Psi_{\circ}\right| \hat{a}^{4}\left|\Psi_{\circ}\right\rangle k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on effective spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+N a k^{2} \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

Identification leads to

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\Psi_{0}\right| \hat{a}^{4}\left|\Psi_{0}\right\rangle k^{2}
$$

whose unique solution is

$$
N(\tau)=a(\tau)^{3}, \quad a(\tau)=\left\langle\Psi_{\circ}(\tau)\right| \hat{a}^{4}\left|\Psi_{o}(\tau)\right\rangle^{\frac{1}{4}}
$$

Interpretation: the dynamics of a massless quantum field ϕ on quantum spacetime Ψ_{o} is equivalent to the dynamics of ϕ on effective spacetime

$$
d s^{2}=-N^{2} d t^{2}+a^{2} d \vec{x}^{2}=-\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{2}} d \tau^{2}+\left\langle\hat{a}^{4}\right\rangle^{\frac{1}{2}} d \vec{x}^{2}
$$

Interpretation: the dynamics of a massless quantum field ϕ on quantum spacetime ψ_{o} is equivalent to the dynamics of ϕ on effective spacetime

$$
d s^{2}=-N^{2} d t^{2}+a^{2} d \vec{x}^{2}=-\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{2}} d \tau^{2}+\left\langle\hat{a}^{4}\right\rangle^{\frac{1}{2}} d \vec{x}^{2}
$$

Can we generalize?
introduction

Outline

(1) introduction
(2) generalization to massive case
(3) physical cosmology

4 estimation of β
(5) conclusions
introduction

A simple generalization, yet enough to:

- bring up deformations of dispersion relations
- have application in physical cosmology

A simple generalization, yet enough to:

- bring up deformations of dispersion relations
- have application in physical cosmology

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\left\langle\hat{a}^{4}\right\rangle k^{2}+\left\langle\hat{a}^{6}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+\left(N a k^{2}+N a^{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

A simple generalization, yet enough to:

- bring up deformations of dispersion relations
- have application in physical cosmology

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\left\langle\hat{a}^{4}\right\rangle k^{2}+\left\langle\hat{a}^{6}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+\left(N a k^{2}+N a^{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

System of 3 equations for unknowns N and a :

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} m^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

A simple generalization, yet enough to:

- bring up deformations of dispersion relations
- have application in physical cosmology

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\left\langle\hat{a}^{4}\right\rangle k^{2}+\left\langle\hat{a}^{6}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+\left(N a k^{2}+N a^{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

System of 3 equations for unknowns N and a :

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} m^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

No solution!

A simple generalization, yet enough to:

- bring up deformations of dispersion relations
- have application in physical cosmology

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\left\langle\hat{a}^{4}\right\rangle k^{2}+\left\langle\hat{a}^{6}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{a^{3}} \hat{\pi}_{k}^{2}+\left(N a k^{2}+N a^{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

System of 3 equations for unknowns N and a:

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} m^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

No solution!

Two approaches:

1. make the effective mass an unknown (Agullo, Ashtekar, Neslon [1211.1354])
2. put together second and third eq's (Assanioussi, AD, Lewandowski [1412.6000])
introduction
approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

whose unique solution is: a and N as in the massless case, moreover

$$
\bar{m}=\frac{\left\langle\hat{a}^{6}\right\rangle^{\frac{1}{2}}}{\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{4}}} m
$$

approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

whose unique solution is: a and N as in the massless case, moreover

$$
\bar{m}=\frac{\left\langle\hat{a}^{6}\right\rangle^{\frac{1}{2}}}{\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{4}}} m
$$

\Rightarrow Effective mass is a renormalization of m by time-dependent multiplicative factor!
approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

whose unique solution is: a and N as in the massless case, moreover

$$
\bar{m}=\frac{\left\langle\hat{a}^{6}\right\rangle^{\frac{1}{2}}}{\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{4}}} m
$$

\Rightarrow Effective mass is a renormalization of m by time-dependent multiplicative factor!
approach 2: 2 equations for 2 unknowns

$$
N / a^{3}=1, \quad N a k^{2} / m^{2}+N a^{3}=\left\langle\hat{a}^{4}\right\rangle k^{2} / m^{2}+\left\langle\hat{a}^{6}\right\rangle
$$

approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

whose unique solution is: a and N as in the massless case, moreover

$$
\bar{m}=\frac{\left\langle\hat{a}^{6}\right\rangle^{\frac{1}{2}}}{\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{4}}} m
$$

\Rightarrow Effective mass is a renormalization of m by time-dependent multiplicative factor!
approach 2: 2 equations for 2 unknowns

$$
N / a^{3}=1, \quad N a k^{2} / m^{2}+N a^{3}=\left\langle\hat{a}^{4}\right\rangle k^{2} / m^{2}+\left\langle\hat{a}^{6}\right\rangle
$$

whose unique solution is

$$
N=a^{3}, \quad a=a\left(k / m,\left\langle\hat{a}^{4}\right\rangle,\left\langle\hat{a}^{6}\right\rangle\right)
$$

approach 1: 3 equations for 3 unknowns

$$
N / a^{3}=1, \quad N a k^{2}=\left\langle\hat{a}^{4}\right\rangle k^{2}, \quad N a^{3} \bar{m}^{2}=\left\langle\hat{a}^{6}\right\rangle m^{2}
$$

whose unique solution is: a and N as in the massless case, moreover

$$
\bar{m}=\frac{\left\langle\hat{a}^{6}\right\rangle^{\frac{1}{2}}}{\left\langle\hat{a}^{4}\right\rangle^{\frac{3}{4}}} m
$$

\Rightarrow Effective mass is a renormalization of m by time-dependent multiplicative factor!
approach 2: 2 equations for 2 unknowns

$$
N / a^{3}=1, \quad N a k^{2} / m^{2}+N a^{3}=\left\langle\hat{a}^{4}\right\rangle k^{2} / m^{2}+\left\langle\hat{a}^{6}\right\rangle
$$

whose unique solution is

$$
N=a^{3}, \quad a=a\left(k / m,\left\langle\hat{a}^{4}\right\rangle,\left\langle\hat{a}^{6}\right\rangle\right)
$$

\Rightarrow Effective metric depends on the wavenumber k / m of the mode considered!

Interpretation: the dynamics of quantum field ϕ of mass m on quantum spacetime Ψ_{o} is equivalent to dynamics of the same field on a 1-parameter family of effective spacetimes

$$
d s_{(k)}^{2}=-N_{k}^{2} d \tau^{2}+a_{k}^{2} d \vec{x}^{2}, \quad N_{k}=a_{k}^{3}
$$

Interpretation: the dynamics of quantum field ϕ of mass m on quantum spacetime Ψ_{o} is equivalent to dynamics of the same field on a 1-parameter family of effective spacetimes

$$
d s_{(k)}^{2}=-N_{k}^{2} d \tau^{2}+a_{k}^{2} d \vec{x}^{2}, \quad N_{k}=a_{k}^{3}
$$

$g_{\mu \nu}^{(k)}$ is a rainbow metric, and thus presents modified dispersion relation

dispersion relation

Identify the frame of a classical observer: $\left\{u^{\mu}, e_{i}^{\mu}\right\}$ s.t.

$$
u \cdot u=-1, \quad u \cdot e_{i}=0, \quad e_{i} \cdot e_{j}=\delta_{i j}
$$

where scalar product is given by the "low energy" metric, i.e., the metric seen by modes with $k \ll m$:

$$
a_{k}^{2} \approx a_{o}^{2}\left[1+\frac{\beta}{3}\left(\frac{k / a_{o}}{m}\right)^{2}\right]=a_{o}^{2}\left[1+\frac{\beta}{3} \frac{P^{2}}{m^{2}}\right]
$$

where

$$
a_{o}^{2}=\sqrt[3]{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle}, \quad \beta:=\frac{\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle}{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}-1
$$

$P^{2}=\delta^{i j} P_{i} P_{j}=\delta^{i j} k_{i} k_{j} / a_{o}^{2}$ is the norm of physical momentum $P_{i}:=e_{i}^{\mu} k_{\mu}$ of mode k.

dispersion relation

Identify the frame of a classical observer: $\left\{u^{\mu}, e_{i}^{\mu}\right\}$ s.t.

$$
u \cdot u=-1, \quad u \cdot e_{i}=0, \quad e_{i} \cdot e_{j}=\delta_{i j}
$$

where scalar product is given by the "low energy" metric, i.e., the metric seen by modes with $k \ll m$:

$$
a_{k}^{2} \approx a_{o}^{2}\left[1+\frac{\beta}{3}\left(\frac{k / a_{o}}{m}\right)^{2}\right]=a_{o}^{2}\left[1+\frac{\beta}{3} \frac{p^{2}}{m^{2}}\right]
$$

where

$$
a_{o}^{2}=\sqrt[3]{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle}, \quad \beta:=\frac{\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle}{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}-1
$$

$P^{2}=\delta^{i j} P_{i} P_{j}=\delta^{i j} k_{i} k_{j} / a_{o}^{2}$ is the norm of physical momentum $P_{i}:=e_{i}^{\mu} k_{\mu}$ of mode k.

Let $E:=u^{\mu} k_{\mu}=k_{0} / N_{o}$ be the physical energy of mode k. Then the mass shell is

$$
-m^{2}=g_{(k)}^{\mu \nu} k_{\mu} k_{\nu}=-\frac{k_{0}^{2}}{N_{k}^{2}}+\frac{\sum_{i} k_{i}^{2}}{a_{k}^{2}}=-\frac{k_{0}^{2}}{N_{o}^{2}} \frac{N_{o}^{2}}{N_{k}^{2}}+\frac{k^{2}}{a_{o}^{2}} \frac{a_{o}^{2}}{a_{k}^{2}}=-E^{2} f^{2}+P^{2} g^{2}
$$

where the rainbow functions are

$$
f:=\frac{N_{o}}{N_{k}}, \quad g:=\frac{a_{o}}{a_{k}}=\frac{N_{o}}{N_{k}} \frac{a_{k}^{2}}{a_{o}^{2}}=f \frac{a_{k}^{2}}{a_{0}^{2}}
$$

dispersion relation

Following the analysis of Gallego-Torromé, Letizia, Liberati [1507.03205], we use the equation satisfied by a_{k} to replace $m^{2} a_{k}^{6} / a_{o}^{6}$ with $\left(\left\langle\hat{a}^{4}\right\rangle k^{2}+\left\langle\hat{a}^{6}\right\rangle m^{2}\right) / a_{o}^{6}-P^{2} a_{k}^{4} / a_{o}^{4}$:

$$
\begin{aligned}
E^{2} & =\frac{1}{f^{2}}\left(m^{2}+g^{2} P^{2}\right)=\frac{a_{k}^{6}}{a_{0}^{6}} m^{2}+\frac{a_{k}^{4}}{a_{0}^{4}} P^{2}=\frac{\left\langle\hat{a}^{6}\right\rangle}{a_{0}^{6}} m^{2}+\frac{\left\langle\hat{a}^{4}\right\rangle}{a_{0}^{4}} P^{2}=m^{2}+\frac{\left\langle\hat{a}^{4}\right\rangle}{\left\langle\hat{a}^{6}\right\rangle^{\frac{2}{3}}} P^{2} \\
& =m^{2}+(1+\beta) P^{2}
\end{aligned}
$$

where we used $a_{0}=\sqrt[6]{\left\langle\hat{a}^{6}\right\rangle}$ and $\beta=\left\langle\hat{a}^{4}\right\rangle /\left\langle\hat{a}^{6}\right\rangle^{\frac{2}{3}}-1$.
introduction

dispersion relation

Parameter β encodes the quantum nature of spacetime

$$
E^{2}=m^{2}+(1+\beta) P^{2}, \quad \beta:=\frac{\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle}{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}-1
$$

dispersion relation

Parameter β encodes the quantum nature of spacetime

$$
E^{2}=m^{2}+(1+\beta) P^{2}, \quad \beta:=\frac{\left\langle\Psi_{o}\right| \hat{a}^{4}\left|\Psi_{o}\right\rangle}{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}-1
$$

\Rightarrow deformation controlled by parameter β of quantum gravity origin, and amounts to a renormalization of the speed of light: $c_{\text {ren }}=c \sqrt{1+\beta}$

dispersion relation

Parameter β encodes the quantum nature of spacetime

$$
E^{2}=m^{2}+(1+\beta) P^{2}, \quad \beta:=\frac{\left\langle\Psi_{\circ}\right| \hat{a}^{4}\left|\Psi_{\circ}\right\rangle}{\left\langle\Psi_{o}\right| \hat{a}^{6}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}-1
$$

\Rightarrow deformation controlled by parameter β of quantum gravity origin, and amounts to a renormalization of the speed of light: $c_{\text {ren }}=c \sqrt{1+\beta}$

No role of $E_{\mathrm{PI}}!$ For $\beta \approx 0.2$ (red line), large deviations from Lorentz (blue line) already at $P \sim m$ (for protons, $m \ll E_{\mathrm{PI}}$). But can we really detect this? How?
introduction

anisotropic cosmologies

Bianchi I metric:

$$
d s^{2}=-N^{2} d t^{2}+\sum_{i} a_{i}^{2} d x_{i}^{2}
$$

Better use variables $p_{1}:=a_{2} a_{3}$, and others cyclical.

anisotropic cosmologies

Bianchi I metric:

$$
d s^{2}=-N^{2} d t^{2}+\sum_{i} a_{i}^{2} d x_{i}^{2}
$$

Better use variables $p_{1}:=a_{2} a_{3}$, and others cyclical.

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\sum_{i}\left\langle\hat{p}_{i}^{2}\right\rangle k_{i}^{2}+\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{\sqrt{p_{1} p_{2} p_{3}}} \hat{\pi}_{k}^{2}+\frac{N}{\sqrt{p_{1} p_{2} p_{3}}}\left(\sum_{i}\left(p_{i} k_{i}\right)^{2}+p_{1} p_{2} p_{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

anisotropic cosmologies

Bianchi I metric:

$$
d s^{2}=-N^{2} d t^{2}+\sum_{i} a_{i}^{2} d x_{i}^{2}
$$

Better use variables $p_{1}:=a_{2} a_{3}$, and others cyclical.

QFT on quantum spacetime:

$$
i \frac{d}{d \tau}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[1 \hat{\pi}_{k}^{2}+\left(\sum_{i}\left\langle\hat{p}_{i}^{2}\right\rangle k_{i}^{2}+\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

QFT on classical spacetime:

$$
i \frac{d}{d t}|\varphi\rangle=\frac{1}{2} \sum_{k}\left[\frac{N}{\sqrt{p_{1} p_{2} p_{3}}} \hat{\pi}_{k}^{2}+\frac{N}{\sqrt{p_{1} p_{2} p_{3}}}\left(\sum_{i}\left(p_{i} k_{i}\right)^{2}+p_{1} p_{2} p_{3} m^{2}\right) \hat{\phi}_{k}^{2}\right]|\varphi\rangle
$$

2 equations for 4 unknowns N and p_{i} :

$$
N=\sqrt{p_{1} p_{2} p_{3}}, \quad \sum_{i} p_{i}^{2} k_{i}^{2}+p_{1} p_{2} p_{3} m^{2}-\gamma(\vec{k})=0
$$

with

$$
\gamma(\vec{k}):=\sum_{i}\left\langle\hat{p}_{i}^{2}\right\rangle k_{i}^{2}+\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle m^{2}
$$

anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution $p_{i}=p_{i}(\vec{k})$, but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

$$
E^{2}=m^{2}+P^{2}+\sum_{i} \beta_{i} P_{i}^{2}, \quad \beta_{i}:=\frac{\left\langle\Psi_{\circ}\right| \hat{p}_{i}^{2}\left|\Psi_{o}\right\rangle}{\left(p_{i}^{\circ}\right)^{2}}-1
$$

where $p_{i}(\vec{k})=p_{i}^{o}+O(\vec{k} / m)$.

anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution $p_{i}=p_{i}(\vec{k})$, but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

$$
E^{2}=m^{2}+P^{2}+\sum_{i} \beta_{i} P_{i}^{2}, \quad \beta_{i}:=\frac{\left\langle\Psi_{\circ}\right| \hat{p}_{i}^{2}\left|\Psi_{o}\right\rangle}{\left(p_{i}^{o}\right)^{2}}-1
$$

where $p_{i}(\vec{k})=p_{i}^{o}+O(\vec{k} / m)$.

In this limit, the equation becomes

$$
p_{1}^{o} p_{2}^{o} p_{3}^{o}=\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle=: \omega_{0}
$$

which does not uniquely determine p_{i}°. However, observing that p_{i}^{o} may depend only on ω_{0} and $\omega_{i}=\left\langle\hat{p}_{i}\right\rangle$, we impose the following (arguably reasonable) symmetries:

anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution $p_{i}=p_{i}(\vec{k})$, but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

$$
E^{2}=m^{2}+P^{2}+\sum_{i} \beta_{i} P_{i}^{2}, \quad \beta_{i}:=\frac{\left\langle\Psi_{\circ}\right| \hat{p}_{i}^{2}\left|\Psi_{o}\right\rangle}{\left(p_{i}^{\circ}\right)^{2}}-1
$$

where $p_{i}(\vec{k})=p_{i}^{o}+O(\vec{k} / m)$.

In this limit, the equation becomes

$$
p_{1}^{o} p_{2}^{o} p_{3}^{o}=\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle=: \omega_{0}
$$

which does not uniquely determine p_{i}°. However, observing that p_{i}° may depend only on ω_{0} and $\omega_{i}=\left\langle\hat{p}_{i}\right\rangle$, we impose the following (arguably reasonable) symmetries:

- since ω_{0} is cyclically symmetric in \hat{p} 's, we assume that the three p_{i}^{o} depend on ω_{0} in the same way
- as a function, p_{1}° depends on $\omega_{1}, \omega_{2}, \omega_{3}$ in the same way that p_{2}° depends on $\omega_{2}, \omega_{3}, \omega_{1}$, and p_{3}° on $\omega_{3}, \omega_{1}, \omega_{2}$

anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution $p_{i}=p_{i}(\vec{k})$, but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

$$
E^{2}=m^{2}+P^{2}+\sum_{i} \beta_{i} P_{i}^{2}, \quad \beta_{i}:=\frac{\left\langle\Psi_{\circ}\right| \hat{p}_{i}^{2}\left|\Psi_{o}\right\rangle}{\left(p_{i}^{\circ}\right)^{2}}-1
$$

where $p_{i}(\vec{k})=p_{i}^{o}+O(\vec{k} / m)$.

In this limit, the equation becomes

$$
p_{1}^{o} p_{2}^{o} p_{3}^{o}=\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle=: \omega_{0}
$$

which does not uniquely determine p_{i}°. However, observing that p_{i}° may depend only on ω_{0} and $\omega_{i}=\left\langle\hat{p}_{i}\right\rangle$, we impose the following (arguably reasonable) symmetries:

- since ω_{0} is cyclically symmetric in \hat{p} 's, we assume that the three p_{i}^{o} depend on ω_{0} in the same way
- as a function, p_{1}° depends on $\omega_{1}, \omega_{2}, \omega_{3}$ in the same way that p_{2}° depends on $\omega_{2}, \omega_{3}, \omega_{1}$, and p_{3}^{o} on $\omega_{3}, \omega_{1}, \omega_{2}$
Hence, we have

$$
p_{1}^{\circ}=F\left(\omega_{0}, \omega_{1}, \omega_{2}, \omega_{3}\right), \quad p_{2}^{\circ}=F\left(\omega_{0}, \omega_{2}, \omega_{3}, \omega_{1}\right), \quad p_{3}^{\circ}=F\left(\omega_{0}, \omega_{3}, \omega_{1}, \omega_{2}\right)
$$

anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

1. $p_{i}^{\circ}=\omega_{0}^{\frac{1}{3}}$
2. $p_{1}^{\circ}=\omega_{0}^{\frac{1}{3}} \omega_{1}^{\frac{1}{3}}\left(\omega_{2} \omega_{3}\right)^{-\frac{1}{6}}$, and others cyclical

anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

1. $p_{i}^{o}=\omega_{0}^{\frac{1}{3}}$
2. $p_{1}^{\circ}=\omega_{0}^{\frac{1}{3}} \omega_{1}^{\frac{1}{3}}\left(\omega_{2} \omega_{3}\right)^{-\frac{1}{6}}$, and others cyclical

Solution 1. leads to $\beta_{i}=\left\langle p_{i}^{2}\right\rangle /\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle^{\frac{2}{3}}-1$, which for a semiclassical state ψ_{0} gives

$$
\beta_{i} \approx \frac{\left\langle p_{i}\right\rangle^{2}}{\left\langle\hat{p}_{1}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{2}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{3}\right\rangle^{\frac{2}{3}}}-1
$$

which does not equal 0 ! So we must discard this solution: wrong classical limit.

anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

1. $p_{i}^{\circ}=\omega_{0}^{\frac{1}{3}}$
2. $p_{1}^{\circ}=\omega_{0}^{\frac{1}{3}} \omega_{1}^{\frac{1}{3}}\left(\omega_{2} \omega_{3}\right)^{-\frac{1}{6}}$, and others cyclical

Solution 1. leads to $\beta_{i}=\left\langle p_{i}^{2}\right\rangle /\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle^{\frac{2}{3}}-1$, which for a semiclassical state ψ_{0} gives

$$
\beta_{i} \approx \frac{\left\langle p_{i}\right\rangle^{2}}{\left\langle\hat{p}_{1}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{2}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{3}\right\rangle^{\frac{2}{3}}}-1
$$

which does not equal 0 ! So we must discard this solution: wrong classical limit.

Solution 2. leads to the correct classical limit, but all three β_{i} coincide:

$$
\beta \equiv \beta_{i}=\frac{\left\langle p_{1}^{2}\right\rangle^{\frac{1}{3}}\left\langle p_{2}^{2}\right\rangle^{\frac{1}{3}}\left\langle p_{3}^{2}\right\rangle^{\frac{1}{3}}}{\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle^{\frac{2}{3}}}-1
$$

anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

1. $p_{i}^{\circ}=\omega_{0}^{\frac{1}{3}}$
2. $p_{1}^{\circ}=\omega_{0}^{\frac{1}{3}} \omega_{1}^{\frac{1}{3}}\left(\omega_{2} \omega_{3}\right)^{-\frac{1}{6}}$, and others cyclical

Solution 1. leads to $\beta_{i}=\left\langle p_{i}^{2}\right\rangle /\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle^{\frac{2}{3}}-1$, which for a semiclassical state ψ_{0} gives

$$
\beta_{i} \approx \frac{\left\langle p_{i}\right\rangle^{2}}{\left\langle\hat{p}_{1}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{2}\right\rangle^{\frac{2}{3}}\left\langle\hat{p}_{3}\right\rangle^{\frac{2}{3}}}-1
$$

which does not equal 0 ! So we must discard this solution: wrong classical limit.

Solution 2. leads to the correct classical limit, but all three β_{i} coincide:

$$
\beta \equiv \beta_{i}=\frac{\left\langle p_{1}^{2}\right\rangle^{\frac{1}{3}}\left\langle p_{2}^{2}\right\rangle^{\frac{1}{3}}\left\langle p_{3}^{2}\right\rangle^{\frac{1}{3}}}{\left\langle\hat{p}_{1} \hat{p}_{2} \hat{p}_{3}\right\rangle^{\frac{2}{3}}}-1
$$

Remarks:

- isotropic deformation of dispersion relation
- β depends on quantum anisotropies
- consistent with isotropic case, when $\hat{p}_{1}\left|\Psi_{0}\right\rangle=\hat{p}_{2}\left|\psi_{0}\right\rangle=\hat{p}_{3}\left|\Psi_{0}\right\rangle$

many fields

Consider N non-interacting quantum fields $\phi_{A}(A=1, \ldots, N)$ not necessarily scalars. The Hamiltonian of the system is

$$
\hat{H}=\hat{H}_{O}+\sum_{A} \hat{H}_{A}
$$

where \hat{H}_{A} depends at most on $\hat{a}, \hat{p}, \hat{\phi}_{A}$ and $\hat{\pi}_{A}$.

many fields

Consider N non-interacting quantum fields $\phi_{A}(A=1, \ldots, N)$ not necessarily scalars. The Hamiltonian of the system is

$$
\hat{H}=\hat{H}_{O}+\sum_{A} \hat{H}_{A}
$$

where \hat{H}_{A} depends at most on $\hat{a}, \hat{p}, \hat{\phi}_{A}$ and $\hat{\pi}_{A}$.
The state of the system is $\psi=\psi_{o} \prod_{A} \varphi_{A}$. Impose Schroedinger equation as before:

$$
\sum_{A}\left(\prod_{B \neq A} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{o} \varphi_{A}\right)=0
$$

where $\hat{H}_{A}^{o}:=\left\langle\Psi_{o}\right| \hat{H}_{A}\left|\Psi_{o}\right\rangle$.

many fields

Consider N non-interacting quantum fields $\phi_{A}(A=1, \ldots, N)$ not necessarily scalars. The Hamiltonian of the system is

$$
\hat{H}=\hat{H}_{0}+\sum_{A} \hat{H}_{A}
$$

where \hat{H}_{A} depends at most on $\hat{a}, \hat{p}, \hat{\phi}_{A}$ and $\hat{\pi}_{A}$.
The state of the system is $\psi=\psi_{\circ} \prod_{A} \varphi_{A}$. Impose Schroedinger equation as before:

$$
\sum_{A}\left(\prod_{B \neq A} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{\circ} \varphi_{A}\right)=0
$$

where $\hat{H}_{A}^{o}:=\left\langle\Psi_{o}\right| \hat{H}_{A}\left|\Psi_{o}\right\rangle$.
Single out φ_{1}

$$
\left(\prod_{B \neq 1} \varphi_{B}\right)\left(i \dot{\varphi}_{1}-\hat{H}_{1}^{o} \varphi_{1}\right)=-\varphi_{1} \sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{o} \varphi_{A}\right)
$$

and divide both sides by $\prod_{B} \varphi_{B}$

$$
\frac{1}{\varphi_{1}}\left(i \dot{\varphi}_{1}-\hat{H}_{1}^{o} \varphi_{1}\right)=-\frac{1}{\prod_{B \neq 1} \varphi_{B}} \sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{\circ} \varphi_{A}\right)
$$

introduction
conclusions
dispersion relation anisotropic cosmologies many fields

many fields

The equations separate:

$$
i \dot{\varphi}_{1}-\hat{H}_{1}^{o} \varphi_{1}=E_{1} \varphi_{1}, \quad \sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{o} \varphi_{A}\right)=-E_{1} \prod_{B \neq 1} \varphi_{B}
$$

conclusions

many fields

The equations separate:

$$
i \dot{\varphi}_{1}-\hat{H}_{1}^{o} \varphi_{1}=E_{1} \varphi_{1}, \quad \sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{\circ} \varphi_{A}\right)=-E_{1} \prod_{B \neq 1} \varphi_{B}
$$

The first is a Schroedinger equation for φ_{1} only

$$
i \dot{\varphi}_{1}=\left(\hat{H}_{1}^{o}+E_{1} \hat{\imath}\right) \varphi_{1}
$$

The second is of the same type we started with:

$$
\sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{1} \varphi_{A}\right)=0
$$

with $\hat{H}_{A}^{1}:=\hat{H}_{A}^{o}-E_{1} \hat{l}$. We can then repeat the trick, and separate φ_{2} and so on.

many fields

The equations separate:

$$
i \dot{\varphi}_{1}-\hat{H}_{1}^{\circ} \varphi_{1}=E_{1} \varphi_{1}, \quad \sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{\circ} \varphi_{A}\right)=-E_{1} \prod_{B \neq 1} \varphi_{B}
$$

The first is a Schroedinger equation for φ_{1} only

$$
i \dot{\varphi}_{1}=\left(\hat{H}_{1}^{o}+E_{1} \hat{l}\right) \varphi_{1}
$$

The second is of the same type we started with:

$$
\sum_{A \neq 1}\left(\prod_{B \neq A, 1} \varphi_{B}\right)\left(i \dot{\varphi}_{A}-\hat{H}_{A}^{1} \varphi_{A}\right)=0
$$

with $\hat{H}_{A}^{1}:=\hat{H}_{A}^{o}-E_{1} \hat{l}$. We can then repeat the trick, and separate φ_{2} and so on. We finally obtain N equations:

$$
i \dot{\varphi}_{A}=\left(\hat{H}_{A}^{\circ}+E_{A} \hat{l}\right) \varphi_{A}
$$

E_{A} represents the effective gravitational potential felt by φ_{A} due to the presence of the other fields.
introduction
dispersion relation anisotropic cosmologies many fields

many fields

Since back-reaction of matter on geometry is negligible, we set $E_{A}=0$. Then the equations decouple:

$$
i \dot{\varphi}_{A}=\hat{H}_{A}^{\circ} \varphi_{A} \quad \forall A=1, \ldots, N
$$

many fields

Since back-reaction of matter on geometry is negligible, we set $E_{A}=0$. Then the equations decouple:

$$
i \dot{\varphi}_{A}=\hat{H}_{A}^{\circ} \varphi_{A} \quad \forall A=1, \ldots, N
$$

For every A separately, we compare the equation for ϕ_{A} with QFT on QST for the same ϕ_{A}, reading off the algebraic equations and solving them.

many fields

Since back-reaction of matter on geometry is negligible, we set $E_{A}=0$. Then the equations decouple:

$$
i \dot{\varphi}_{A}=\hat{H}_{A}^{\circ} \varphi_{A} \quad \forall A=1, \ldots, N
$$

For every A separately, we compare the equation for ϕ_{A} with QFT on QST for the same ϕ_{A}, reading off the algebraic equations and solving them.

Interpretation: dynamics of N non-interacting quantum fields ϕ_{A} on quantum spacetime Ψ_{o} is equivalent to dynamics of the same fields on a 2-parameters family of effective spacetimes

$$
d s_{A, k}^{2}=-N_{A, k}^{2} d \tau^{2}+a_{A, k}^{2} d \vec{x}^{2}, \quad N_{A, k}=a_{A, k}^{3}
$$

introduction

kinematics

 dynamicsresult

Outline

(1) introduction
(2) generalization to massive case
(3) physical cosmology

4 estimation of β
(5) conclusions

kinematics

 dynamicsresult

kinematics

The model: m^{2} inflaton minimally coupled to gravity

$$
S=\int d^{4} \times \sqrt{-g}\left(\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}\right)
$$

kinematics

The model: m^{2} inflaton minimally coupled to gravity

$$
S=\int d^{4} \times \sqrt{-g}\left(\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}\right)
$$

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):

- matter: $\phi \rightarrow \phi, \pi$
- geometry: $g_{\mu \nu} \rightarrow q_{a b}, p^{a b}$

Constraints: scalar C and vector C_{a}.

kinematics

The model: m^{2} inflaton minimally coupled to gravity

$$
S=\int d^{4} \times \sqrt{-g}\left(\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}\right)
$$

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):

- matter: $\phi \rightarrow \phi, \pi$
- geometry: $g_{\mu \nu} \rightarrow q_{a b}, p^{a b}$

Constraints: scalar C and vector C_{a}.
Decomposition in homogeneous isotropic part plus "the rest":

$$
\phi=\phi_{0}+\delta \phi, \quad q_{a b}=a^{2} \delta_{a b}+\delta q_{a b}
$$

and similarly for the momenta.

kinematics

The model: m^{2} inflaton minimally coupled to gravity

$$
S=\int d^{4} \times \sqrt{-g}\left(\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}\right)
$$

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):

- matter: $\phi \rightarrow \phi, \pi$
- geometry: $g_{\mu \nu} \rightarrow q_{a b}, p^{a b}$

Constraints: scalar C and vector C_{a}.
Decomposition in homogeneous isotropic part plus "the rest":

$$
\phi=\phi_{o}+\delta \phi, \quad q_{a b}=a^{2} \delta_{a b}+\delta q_{a b}
$$

and similarly for the momenta.
Fourier decomposition of "the rest":

$$
\delta \phi(x) \rightarrow \phi_{k}, \quad \delta q_{a b}(x) \rightarrow q_{m, k}
$$

with $m=1,2, \ldots, 6$ and $k \neq 0$.

kinematics

The model: m^{2} inflaton minimally coupled to gravity

$$
S=\int d^{4} \times \sqrt{-g}\left(\frac{1}{16 \pi G} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}\right)
$$

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):

- matter: $\phi \rightarrow \phi, \pi$
- geometry: $g_{\mu \nu} \rightarrow q_{a b}, p^{a b}$

Constraints: scalar C and vector C_{a}.
Decomposition in homogeneous isotropic part plus "the rest":

$$
\phi=\phi_{0}+\delta \phi, \quad q_{a b}=a^{2} \delta_{a b}+\delta q_{a b}
$$

and similarly for the momenta.
Fourier decomposition of "the rest":

$$
\delta \phi(x) \rightarrow \phi_{k}, \quad \delta q_{a b}(x) \rightarrow q_{m, k}
$$

with $m=1,2, \ldots, 6$ and $k \neq 0$.
(i) linearization of constraints; (ii) solution of constraints wrt $p_{m, k}(m=1, \ldots, 4)$; (iii) gauge-fixing $q_{m, k}=0(m=1, \ldots, 4)$. The only physical degrees of freedom are

- homogeneous isotropic: $a, p ; \phi_{\mathbf{o}}, \pi_{0}$
- "the rest": inflaton ϕ_{k}, π_{k}; two polarization of graviton $q_{+, k}, p_{+, k}$ and $q_{\times, k}, p_{\times, k}$

dynamics

Relational time $\phi_{0} \Rightarrow$ True Hamiltonian of the system

$$
\begin{aligned}
\pi_{o} & =\sqrt{C_{o}(a, p)+\sum_{k} C_{S}\left(a, \phi_{k}, \pi_{k}\right)+\sum_{m=+, \times} \sum_{k} C_{T}\left(a, q_{m, k}, p_{m, k}\right)} \approx \\
& \approx \sqrt{C_{o}(a, p)}+\sum_{k} \frac{C_{S}\left(a, \phi_{k}, \pi_{k}\right)}{2 \sqrt{C_{o}(a, p)}}+\sum_{k, m=+, x} \frac{C_{T}\left(a, q_{m, k}, p_{m, k}\right)}{2 \sqrt{C_{o}(a, p)}}= \\
& =H_{o}+\sum_{A=1}^{3} H_{A}
\end{aligned}
$$

where $A=1$ for the scalar field ϕ and $A=2,3$ for the tensor modes q_{m} of the metric.

[^0]
dynamics

Relational time $\phi_{0} \Rightarrow$ True Hamiltonian of the system

$$
\begin{aligned}
\pi_{o} & =\sqrt{C_{o}(a, p)+\sum_{k} C_{S}\left(a, \phi_{k}, \pi_{k}\right)+\sum_{m=+, \times} \sum_{k} C_{T}\left(a, q_{m, k}, p_{m, k}\right)} \approx \\
& \approx \sqrt{C_{o}(a, p)}+\sum_{k} \frac{C_{S}\left(a, \phi_{k}, \pi_{k}\right)}{2 \sqrt{C_{o}(a, p)}}+\sum_{k, m=+, x} \frac{C_{T}\left(a, q_{m, k}, p_{m, k}\right)}{2 \sqrt{C_{o}(a, p)}}= \\
& =H_{o}+\sum_{A=1}^{3} H_{A}
\end{aligned}
$$

where $A=1$ for the scalar field ϕ and $A=2,3$ for the tensor modes q_{m} of the metric. Explicitly: ${ }^{1}$

$$
H_{1}=\frac{1}{2 H_{o}} \sum_{k}\left[\pi_{k}^{2}+\left(a^{4} k^{2}+a^{6} m^{2}\right) \phi_{k}^{2}\right], \quad H_{m}=\frac{1}{2 H_{o}} \sum_{k}\left[p_{m, k}^{2}+a^{4} k^{2} q_{m, k}^{2}\right]
$$

[^1]
dynamics

Relational time $\phi_{0} \Rightarrow$ True Hamiltonian of the system

$$
\begin{aligned}
\pi_{o} & =\sqrt{C_{o}(a, p)+\sum_{k} C_{S}\left(a, \phi_{k}, \pi_{k}\right)+\sum_{m=+, \times} \sum_{k} C_{T}\left(a, q_{m, k}, p_{m, k}\right)} \approx \\
& \approx \sqrt{C_{o}(a, p)}+\sum_{k} \frac{C_{S}\left(a, \phi_{k}, \pi_{k}\right)}{2 \sqrt{C_{o}(a, p)}}+\sum_{k, m=+, x} \frac{C_{T}\left(a, q_{m, k}, p_{m, k}\right)}{2 \sqrt{C_{o}(a, p)}}= \\
& =H_{o}+\sum_{A=1}^{3} H_{A}
\end{aligned}
$$

where $A=1$ for the scalar field ϕ and $A=2,3$ for the tensor modes q_{m} of the metric. Explicitly: ${ }^{1}$

$$
H_{1}=\frac{1}{2 H_{0}} \sum_{k}\left[\pi_{k}^{2}+\left(a^{4} k^{2}+a^{6} m^{2}\right) \phi_{k}^{2}\right], \quad H_{m}=\frac{1}{2 H_{0}} \sum_{k}\left[p_{m, k}^{2}+a^{4} k^{2} q_{m, k}^{2}\right]
$$

Up to H_{o}^{-1} factor, these are precisely the Hamiltonians of the toy model presented:

- scalar modes behave as a real is massive field
- tensor modes behave as two real massless fields

[^2]introduction
kinematics dynamics result

result

So we can apply the result for many non-interacting fields, concluding that the effective metric is

$$
d s_{A, k}^{2}=-a_{A, k}^{6} d \tau^{2}+a_{A, k}^{2} d \vec{x}^{2}
$$

where

$$
a_{A, k}= \begin{cases}a(k / m) & \text { if } A=1 \\ {\left[\frac{\left\langle\hat{H}_{o}^{-\frac{1}{2}} \hat{a}^{4} \hat{H}_{o}^{-\frac{1}{2}}\right\rangle}{\left\langle\hat{H}_{o}^{-1}\right\rangle}\right]^{\frac{1}{4}}} & \text { if } A=2,3\end{cases}
$$

result

So we can apply the result for many non-interacting fields, concluding that the effective metric is

$$
d s_{A, k}^{2}=-a_{A, k}^{6} d \tau^{2}+a_{A, k}^{2} d \vec{x}^{2}
$$

where

$$
a_{A, k}= \begin{cases}a(k / m) & \text { if } A=1 \\ {\left[\frac{\left\langle\hat{H}_{o}^{-\frac{1}{2}} \hat{a}^{4} \hat{H}_{o}^{-\frac{1}{2}}\right\rangle}{\left\langle\hat{H}_{o}^{-1}\right\rangle}\right]^{\frac{1}{4}}} & \text { if } A=2,3\end{cases}
$$

Hence, gravitons move at c, while high energy scalar modes at $c_{\text {ren }}=c \sqrt{1+\beta}$.
\Rightarrow We expect Cerenkov radiation

- from scalar particles into gravitons, if $\beta>0$. Bounds from GRB: $\beta \lesssim 10^{-19}$
- from gravitons into scalar particles, if $\beta<0$. Bounds from pulsars: $|\beta| \lesssim 10^{-2}$

See Gallego-Torromé, Letizia, Liberati [1507.03205] for details.

Outline

(1) introduction
(2) generalization to massive case
(3) physical cosmology
(4) estimation of βconclusions

So, how large is β actually? Depends on the quantum gravity theory (for the definition of geometrical operators) and on the choice of state ψ_{o}.

loop quantum cosmology

Let $\{|v\rangle\}$ be eigenbasis of volume operator $\hat{v} \sim \hat{a}^{3}$. The universe today is best described by a Gaussian peaked on large volume $v_{o} \gg 1$:

$$
\left|\Psi_{0}\right\rangle=\frac{1}{N} \int_{0}^{\infty} d v e^{-\left[\ln (v)-\ln \left(v_{0}\right)\right]^{2} / 4 s^{2}}|v\rangle
$$

loop quantum cosmology

Let $\{|v\rangle\}$ be eigenbasis of volume operator $\hat{v} \sim \hat{a}^{3}$. The universe today is best described by a Gaussian peaked on large volume $v_{o} \gg 1$:

$$
\left|\Psi_{0}\right\rangle=\frac{1}{N} \int_{0}^{\infty} d v e^{-\left[\ln (v)-\ln \left(v_{0}\right)\right]^{2} / 4 s^{2}}|v\rangle
$$

Then evaluation of β is straightforward:

$$
\beta=\frac{\left\langle\Psi_{o}\right| \hat{v}^{\frac{4}{3}}\left|\Psi_{o}\right\rangle-\left\langle\Psi_{o}\right| \hat{v}^{2}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}{\left\langle\Psi_{o}\right| \hat{v}^{2}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}} \approx e^{-4 s^{2} / 9}-1 \approx-\frac{4}{9} s^{2}
$$

where s is the relative dispersion of volume:

$$
s \approx \Delta v /\langle\hat{v}\rangle
$$

loop quantum cosmology

Let $\{|v\rangle\}$ be eigenbasis of volume operator $\hat{v} \sim \hat{a}^{3}$. The universe today is best described by a Gaussian peaked on large volume $v_{o} \gg 1$:

$$
\left|\Psi_{0}\right\rangle=\frac{1}{N} \int_{0}^{\infty} d v e^{-\left[\ln (v)-\ln \left(v_{0}\right)\right]^{2} / 4 s^{2}}|v\rangle
$$

Then evaluation of β is straightforward:

$$
\beta=\frac{\left\langle\Psi_{o}\right| \hat{v}^{\frac{4}{3}}\left|\Psi_{o}\right\rangle-\left\langle\Psi_{o}\right| \hat{v}^{2}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}}{\left\langle\Psi_{o}\right| \hat{v}^{2}\left|\Psi_{o}\right\rangle^{\frac{2}{3}}} \approx e^{-4 s^{2} / 9}-1 \approx-\frac{4}{9} s^{2}
$$

where s is the relative dispersion of volume:

$$
s \approx \Delta v /\langle\hat{v}\rangle
$$

Remarks:

- $\beta<0$: the dressed speed of light $c_{r e n}$ is less than the bare c
- β decays quadratically in $\Delta v /\langle\hat{v}\rangle \ll 1$: tiny $Q G$ effect today

GFT quantum cosmology

Let $\left|\Psi_{o}\right\rangle=|\sigma\rangle$ be a GFT condensate concentrated on a single spin j :

$$
|\sigma\rangle=\frac{1}{N} \exp \left(\int d^{4} g d \tau \sigma\left(g_{1}, \ldots, g_{4}, \tau\right) \varphi\left(g_{1}, \ldots, g_{4}, \tau\right)^{\dagger}\right)|0\rangle
$$

with

$$
\sigma\left(g_{1}, \ldots, g_{4}, \tau\right)=\sigma_{j}(\tau) \sum_{m_{\mathbf{1}}, \ldots, n_{4}} \overline{\iota_{m_{1}}^{+} \ldots m_{4}} \iota_{n_{1}}^{+} \ldots n_{4} \prod_{i=1}^{4} \frac{1}{2 j+1} D_{m_{i} n_{i}}^{j}\left(g_{i}\right)
$$

conclusions

GFT quantum cosmology

Let $\left|\Psi_{o}\right\rangle=|\sigma\rangle$ be a GFT condensate concentrated on a single spin j :

$$
|\sigma\rangle=\frac{1}{N} \exp \left(\int d^{4} g d \tau \sigma\left(g_{1}, \ldots, g_{4}, \tau\right) \varphi\left(g_{1}, \ldots, g_{4}, \tau\right)^{\dagger}\right)|0\rangle
$$

with

$$
\sigma\left(g_{1}, \ldots, g_{4}, \tau\right)=\sigma_{j}(\tau) \sum_{m_{\mathbf{1}}, \ldots, n_{\mathbf{4}}} \overline{\iota_{m_{1}}^{+} \ldots m_{4}} \iota_{n_{1} \ldots n_{4}}^{+} \prod_{i=1}^{4} \frac{1}{2 j+1} D_{m_{i} n_{i}}^{j}\left(g_{i}\right)
$$

It is easy to see that, for any function $f(v(\tau))$ of τ-evolved volume $v(\tau)$, it is

$$
\langle\sigma| f(\hat{v}(\tau))|\sigma\rangle=f\left(V_{j}\right)\left|\sigma_{j}(\tau)\right|^{2}, \quad V_{j} \sim \ell_{P J^{3}}{ }^{\frac{3}{2}}
$$

which leads to

$$
\begin{aligned}
\beta & =\frac{\langle\sigma| \hat{v}^{\frac{4}{3}}(\tau)|\sigma\rangle-\langle\sigma| \hat{v}(\tau)^{2}|\sigma\rangle^{\frac{2}{3}}}{\langle\sigma| \hat{v}(\tau)^{2}|\sigma\rangle^{\frac{2}{3}}}=\frac{\left|\sigma_{j}(\tau)\right|^{2}-\left|\sigma_{j}(\tau)\right|^{4 / 3}}{\left|\sigma_{j}(\tau)\right|^{4 / 3}}=\left|\sigma_{j}(\tau)\right|^{2 / 3}-1 \sim \\
& \sim \frac{1}{\ell_{P I} \sqrt{j}}\langle\sigma| \hat{v}(\tau)|\sigma\rangle^{\frac{1}{3}}-1
\end{aligned}
$$

conclusions

GFT quantum cosmology

Let $\left|\Psi_{o}\right\rangle=|\sigma\rangle$ be a GFT condensate concentrated on a single spin j :

$$
|\sigma\rangle=\frac{1}{N} \exp \left(\int d^{4} g d \tau \sigma\left(g_{1}, \ldots, g_{4}, \tau\right) \varphi\left(g_{1}, \ldots, g_{4}, \tau\right)^{\dagger}\right)|0\rangle
$$

with

$$
\sigma\left(g_{1}, \ldots, g_{4}, \tau\right)=\sigma_{j}(\tau) \sum_{m_{\mathbf{1}}, \ldots, n_{\mathbf{4}}} \overline{\iota_{m_{1}}^{+} \ldots m_{4}} \iota_{n_{1} \ldots n_{4}}^{+} \prod_{i=1}^{4} \frac{1}{2 j+1} D_{m_{i} n_{i}}^{j}\left(g_{i}\right)
$$

It is easy to see that, for any function $f(v(\tau))$ of τ-evolved volume $v(\tau)$, it is

$$
\langle\sigma| f(\hat{v}(\tau))|\sigma\rangle=f\left(V_{j}\right)\left|\sigma_{j}(\tau)\right|^{2}, \quad V_{j} \sim \ell_{P J^{3}}{ }^{\frac{3}{2}}
$$

which leads to

$$
\begin{aligned}
\beta & =\frac{\langle\sigma| \hat{v} \hat{v}^{\frac{4}{3}}(\tau)|\sigma\rangle-\langle\sigma| \hat{v}(\tau)^{2}|\sigma\rangle^{\frac{2}{3}}}{\langle\sigma| \hat{v}(\tau)^{2}|\sigma\rangle^{\frac{2}{3}}}=\frac{\left|\sigma_{j}(\tau)\right|^{2}-\left|\sigma_{j}(\tau)\right|^{4 / 3}}{\left|\sigma_{j}(\tau)\right|^{4 / 3}}=\left|\sigma_{j}(\tau)\right|^{2 / 3}-1 \sim \\
& \sim \frac{1}{\ell_{P / \sqrt{j}}}\langle\sigma| \hat{v}(\tau)|\sigma\rangle^{\frac{1}{3}}-1
\end{aligned}
$$

Remarks:

- Since j is constant, β grows linearly with the size of the Universe!
- Note that this $|\sigma\rangle$ is not the only candidate for cosmological state in GFT

Outline

(1) introduction

(2) generalization to massive case
(3) physical cosmology

4 estimation of β
(5) conclusions

What I presented:

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields
- application to physical cosmology
* observational bounds on β
* estimation of β in LQC (passes the test) and GFT (does not)

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields
- application to physical cosmology
* observational bounds on β
* estimation of β in LQC (passes the test) and GFT (does not)

Outlook:

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields
- application to physical cosmology
* observational bounds on β
* estimation of β in LQC (passes the test) and GFT (does not)

Outlook:

- in cosmology: consider more realistic potentials; test other candidate QG theories

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields
- application to physical cosmology
* observational bounds on β
* estimation of β in LQC (passes the test) and GFT (does not)

Outlook:

- in cosmology: consider more realistic potentials; test other candidate QG theories
- matter sector: find the dispersion relation for other species (vectors fields, spinors)

What I presented:

- mechanism for emergence of continuous spacetime $g_{\mu \nu}$ "seen" by the quantum field when it propagates on isotropic quantum cosmology
* massless scalar field: $g_{\mu \nu}$ is k-indepedent; $E^{2}=m^{2}+P^{2}$
* massive scalar field: $g_{\mu \nu}$ is k-dependent; $E^{2}=m^{2}+\sqrt{1+\beta} P^{2}$ with "refractive index" β encoding the underlying quantum geometry
- extension to Bianchi I: no anisotropies in the deformed dispersion relation
- extension to many non-interacting fields
- application to physical cosmology
* observational bounds on β
* estimation of β in LQC (passes the test) and GFT (does not)

Outlook:

- in cosmology: consider more realistic potentials; test other candidate QG theories
- matter sector: find the dispersion relation for other species (vectors fields, spinors)
- geometry sector: generalize the mechanism beyond quantum cosmology
* quantum spherical collapse and Black Holes
introduction
massive case

GRAZIE!

[^0]: ${ }^{1} \mathrm{~A}$ similar result holds if one uses Mukhanov-Sasaki variables

[^1]: ${ }^{1}$ A similar result holds if one uses Mukhanov-Sasaki variables

[^2]: ${ }^{1}$ A similar result holds if one uses Mukhanov-Sasaki variables

