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introduction

Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

N
H=Ho+ 5 Xk: [77 + a*k?47]

Formally quantize the system (in harmonic time, T, defined by N = a3):

N N ~ 1 4 a2 24 22
H:Ho®l+§;[l®7rk+k 30 3
acting on Hilbert space H = Hgeom ® Hmatt.

Approx: no entanglement between geometry (Wo € Hgeom) and matter (¢ € Hmatt)

V(7) = Vo (1) ® @(T), id%\wcg = H,|W,)
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QFT on quantum spacetime:

. d 1 2 A4 242
’;W) = 5? [17fk +(Wol|a™|Wo)k ¢k] )

QFT on effective spacetime:

1
'*|<P 5? L*ﬁk + Nak d)ki| )

Identification leads to

N/a® =1, Nak? = (W,|a%|W,) k2

/

whose unique solution is

N(T) = a(1)?,  a(r) = (Wo(r)[a*|Wo(r)) 4
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Interpretation: the dynamics of a massless quantum field ¢ on quantum spacetime
WV, is equivalent to the dynamics of ¢ on effective spacetime

ds? = —N2dt? + 22d52 = —(5%)3 dr2 + (3%) 2 d%2
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introduction

Interpretation: the dynamics of a massless quantum field ¢ on quantum spacetime
WV, is equivalent to the dynamics of ¢ on effective spacetime

ds? = —N2dt? + 22d52 = —(5%)3 dr2 + (3%) 2 d%2

Can we generalize?
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anisotropic cosmologies
many fields

Outline

© generalization to massive case
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A simple generalization, yet enough to:
e bring up deformations of dispersion relations
e have application in physical cosmology
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many fields

A simple generalization, yet enough to:
e bring up deformations of dispersion relations
e have application in physical cosmology

QFT on quantum spacetime:

[132 + ((3%)K% + (3%)m?)3F | Io)

N =
=~

. d )

| — =

dr s
QFT on classical spacetime:

d 1 N .
il =5 3 [ AR+ (el )R I
dt 2 o La
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N/a® =1, Nak? = (3*)k?, Na®m? = (35)m?

8/30



massive case dispersion relation
anisotropic cosmologies

many fields

A simple generalization, yet enough to:
e bring up deformations of dispersion relations
e have application in physical cosmology

QFT on quantum spacetime:
1 ~
i le) = 3 3 [1A% + (39K + GH)m)R] o)
k
QFT on classical spacetime:
1
2

d N, R
Sl =5> [;ﬂk + (Nak? + Na3m2)¢>i} o)
k

System of 3 equations for unknowns N and a:
N/a3 =1, Nak? = (a*)k?, Na®m? = (35)m?

No solution!

8/30



massive case dispersion relation
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A simple generalization, yet enough to:
e bring up deformations of dispersion relations
e have application in physical cosmology

QFT on quantum spacetime:
1 ~
i le) = 3 3 [1A% + (39K + GH)m)R] o)
k
QFT on classical spacetime:
1
2

d N, R
Sl =5> [;ﬂk + (Nak? + Na3m2)¢>i} o)
k

System of 3 equations for unknowns N and a:
N/a3 =1, Nak? = (a*)k?, Na®m? = (35)m?

No solution!

Two approaches:
1. make the effective mass an unknown (Agullo, Ashtekar, Neslon [1211.1354])
2. put together second and third eq’s (Assanioussi, AD, Lewandowski [1412.6000])
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whose unique solution is: a and N as in the massless case, moreover
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approach 1: 3 equations for 3 unknowns

N/a® =1, Nak? = (3%)k?
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whose unique solution is: a and N as in the massless case, moreover
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= Effective mass is a renormalization of m by time-dependent multiplicative factor!
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approach 1: 3 equations for 3 unknowns
N/a® =1, Nak? = (a*)k?, Nadm? = (35 m?

whose unique solution is: a and N as in the massless case, moreover

3
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NI
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= Effective mass is a renormalization of m by time-dependent multiplicative factor!

approach 2: 2 equations for 2 unknowns

N/ad =1, Nak?/m? + Na® = (3*)k?/m? + (3°)
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many fields

approach 1: 3 equations for 3 unknowns
N/a® =1, Nak? = (a*)k?, Nadm? = (35 m?

whose unique solution is: a and N as in the massless case, moreover

m= <§6>% m
(a3

= Effective mass is a renormalization of m by time-dependent multiplicative factor!

approach 2: 2 equations for 2 unknowns
N/a® =1, Nak?/m? 4 Na® = (3% k?/m? + (a°)

whose unique solution is
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massive case dispersion relation
anisotropic cosmologies

many fields

approach 1: 3 equations for 3 unknowns
N/a® =1, Nak? = (a*)k?, Nadm? = (35 m?

whose unique solution is: a and N as in the massless case, moreover

m= <§6>% m
(a3

= Effective mass is a renormalization of m by time-dependent multiplicative factor!

approach 2: 2 equations for 2 unknowns
N/a® =1, Nak?/m? 4 Na® = (3% k?/m? + (a°)
whose unique solution is
N = a3, a=a(k/m, (5%, (5%)

= Effective metric depends on the wavenumber k/m of the mode considered!
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Interpretation: the dynamics of quantum field ¢ of mass m on quantum spacetime
W, is equivalent to dynamics of the same field on a 1-parameter family of effective
spacetimes
2 2 2 2 42 3
ds(k) = —Nid7° + aj dxX°, Ni = ay
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massive case dispersion relation
anisotropic cosmologies

many fields

Interpretation: the dynamics of quantum field ¢ of mass m on quantum spacetime
W, is equivalent to dynamics of the same field on a 1-parameter family of effective
spacetimes
2 2 2 2 42 3
ds(k) = —Nid7° + aj dxX°, Ni = ay

g;(ff,) is a rainbow metric, and thus presents modified dispersion relation
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massive case dispersion relation
anisotropic cosmologies
many fields

dispersion relation

Identify the frame of a classical observer: {ut,el'} s.t.

u-u=-—1, u-e =0, e - = 0j
where scalar product is given by the “low energy”’ metric, i.e., the metric seen by
modes with k < m:

k/a B P?
ai 1+ ( mo) :| |:1+§§:|
where
SR
2 = (ol v,), g o= YeldlVo) 4

(Wo|a6| W, >§

=5l p; P = 6Uk,kj/a is the norm of physical momentum P; := el.“k,/ of mode k.
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dispersion relation

Identify the frame of a classical observer: {ut,el'} s.t.
u-u=-—1, u-e =0, e - = 0j

where scalar product is given by the “low energy”’ metric, i.e., the metric seen by

modes with k < m:
B [ kfao\? s B P?
1+ = (— = 1+=—
+ 3 ( m ) R 3 m?

(UNE
a2 = {/(Wo|a8|v,), 8= {WolVo) °|A" | °>; -1
(Wola8|Wo)3

P2 = (SUP,-PJ- = 6ijk;kj/a§ is the norm of physical momentum P; := el.“k,/ of mode k.

2 .2
aj ~ ag

where

Let £ := utk,, = ko/No be the physical energy of mode k. Then the mass shell is

k2 S k? k3 N2 k? a2
2 _puv _ 0 it 0 o o __ 272 2 2
—-m* =g/ Skuk, = ——5 + =—— -+ —— =—Ef°“+ P°g
(k) N2 a2 N2 N2 a2 a2
where the rainbow functions are
P No _ ao_Noai_fa,Z(
TN ak N a3 a3
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dispersion relation
anisotropic cosmologies

massive case
many fields
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(
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dispersion relation
Following the analysis of Gallego-Torromé, Letizia, Liberati [1507 03205] we use the
equation satisfied by aj to replace m?a8 /a5 with ((3*)k? + (3%)m?)/a8 — P?a} /a3:
2 46 34

E2:72 2 1 g2P?) 2+7’1§'D2:(36> 24 4P2:m2+<azP2

f as a8 as 36)3

24+ (1+p)P?
)3 —1.

=m
where we used a, = ¥/(56) and 3 = (3*) /(
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dispersion relation

Parameter 3 encodes the quantum nature of spacetime

(Wol3*|Wo)

E2=m?+(1+8)P?, p[:= 5
(Wola®|wo)3
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dispersion relation

Parameter 3 encodes the quantum nature of spacetime

(Wola*Wo)
(Vo]0 Wo) 3

= deformation controlled by parameter 3 of quantum gravity origin, and amounts to
a renormalization of the speed of light: ¢en = cv/1+

E2=m?+(1+8)P?, p[:=

L ! p/m
10p
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massive case dispersion relation
anisotropic cosmologies
many fields

dispersion relation

Parameter 3 encodes the quantum nature of spacetime

(Wola*Wo)
(Vo]0 Wo) 3

= deformation controlled by parameter 3 of quantum gravity origin, and amounts to
a renormalization of the speed of light: ¢en = cv/1+

E2=m?+(1+8)P?, p[:=

08

0.6

0.4

0.2

0.0

L ! p/m
0 2 4 6 8 10

No role of Ep)! For 3 = 0.2 (red line), large deviations from Lorentz (blue line)
already at P ~ m (for protons, m < Ep|). But can we really detect this? How?
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Bianchi | metric:
ds? = —N?dt* + ) a7dx?
i

Better use variables p; := a»as, and others cyclical.
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anisotropic cosmologies

Bianchi | metric:
ds? = —N?dt* + ) a7dx?
i

Better use variables p; := a»as, and others cyclical.

QFT on quantum spacetime:

. d 1
IEW)) = EZ

k

17% + (Z@?M? + <ﬁ1ﬁzﬁ3>m2> q?i} )
QFT on classical spacetime:

.d 1 N 2 N > 2\ 22
i— == + E ki) + m
dt‘<p> 5 Ek [ k PipaPs ( (piki) P1p2pP3 Pic | 1#)

e —
vV P1P2P3 A
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Bianchi | metric:
ds? = —N?dt* + ) a7dx?
i

Better use variables p; := a»as, and others cyclical.

QFT on quantum spacetime:

. d 1
IEW)) = EZ

k

17% + (Z@?M? + <ﬁ1ﬁzﬁ3>m2> q?i} )
QFT on classical spacetime:

.d 1 N N 2 2| 22
i— :72 A2+ > "(piki)? + p1p2psm? | b
dt‘c'o> 2 [vmpng, kT \/p1p2ps ( (piki) e k| 1#)

i

2 equations for 4 unknowns N and p;:
N = \/p1p2ps, > " pPk? + p1p2psm® — ~y(k) =0
i
with .
V(k) =Y (BF)KF + (Prp2p3)m”
i
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anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution p; = p,-(E),
but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

W, |p2 v
E>=m?+ P+ > 3P,  fBi= Wolpi Vo) ‘El’z)lz o) 4
. P;

1

where p;(k) = py + O(k/m).
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(Vo P7|Vo)

E>=m?+ P+ > BiP7, fi:=- TR 1
. P;

1

where p;(k) = py + O(k/m).

In this limit, the equation becomes
pTP5PS = (P1P2P3) =: wo

which does not uniquely determine p?. However, observing that p? may depend only
on wo and w; = (P;), we impose the following (arguably reasonable) symmetries:
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W, |p2 v
E>=m?+ P+ > 3P,  fBi= Wolpi Vo) ‘El’z)lz o) 4
. P;

1

where p;(k) = py + O(k/m).

In this limit, the equation becomes
PEP3PS = (P1P2P3) =: wo
which does not uniquely determine p?. However, observing that p? may depend only
on wo and w; = (P;), we impose the following (arguably reasonable) symmetries:
e since wp is cyclically symmetric in p's, we assume that the three p? depend on wo
in the same way

e as a function, p{ depends on w1, w2, w3 in the same way that pg depends on
w2, w3, w1, and p§ on w3, w1, w>
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anisotropic cosmologies

Luckily, to study dispersion relation, we do not need any complete solution p; = p,-(E),
but just the low energy limit. Indeed, repeating Liberati's analysis in this case we find

W, |p2 v
E>=m?+ P+ > 3P,  fBi= Wolpi Vo) ‘El’z)lz o) 4
. P;

1

where p;(k) = py + O(k/m).

In this limit, the equation becomes
pTP5PS = (P1P2P3) =: wo
which does not uniquely determine p?. However, observing that p? may depend only

on wo and w; = (P;), we impose the following (arguably reasonable) symmetries:

e since wp is cyclically symmetric in p's, we assume that the three p? depend on wo
in the same way

e as a function, p{ depends on w1, w2, w3 in the same way that pg depends on
w2, w3, w1, and p§ on w3, w1, w>

Hence, we have
p? = F(wo,w1,w2,w3), p3 = F(wo,w2,w3,w1), p§ = F(wo,ws,w1,w2)

15 /30



massive case dispersion relation
anisotropic cosmologies
many fields

anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

I

L pf =wg
1

2. pp = wg wy (waws)

=

_1 .
6, and others cyclical
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anisotropic cosmologies

By a dimensional argument it now follows that there are only two possibilities:

I

L pf =wg

i 1 1
2. p? = ww (waw3)~ 6, and others cyclical

Solution 1. leads to 3; = (p?)/(falﬁzﬁn)% — 1, which for a semiclassical state W, gives

B~ (pi) _

(pr)3 (b2) 5 (pa)

which does not equal 0! So we must discard this solution: wrong classical limit.

N
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Solution 1. leads to 3; = (p?)/(falﬁzﬁn)% — 1, which for a semiclassical state W, gives
(pi)? 1
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which does not equal 0! So we must discard this solution: wrong classical limit.

Solution 2. leads to the correct classical limit, but all three 3; coincide:
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anisotropic cosmologies
By a dimensional argument it now follows that there are only two possibilities:

I

L pf =wg
11 1
2. p? = ww (waw3)~ 6, and others cyclical
Solution 1. leads to 3; = (p?)/(falﬁzﬁn)% — 1, which for a semiclassical state W, gives
(pi)? 1

Bi =~

(pr)3 (b2) 5 (pa)

which does not equal 0! So we must discard this solution: wrong classical limit.

Solution 2. leads to the correct classical limit, but all three 3; coincide:

wiH

1 1
o PDIEREEDE
3

Remarks:
e isotropic deformation of dispersion relation

e 3 depends on quantum anisotropies

e consistent with isotropic case, when p1|Wo) = p2|Wo) = p3|Vo)
16 /30
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Consider N non-interacting quantum fields ¢4 (A =1, ..., N) not necessarily scalars.
The Hamiltonian of the system is

where H, depends at most on 3, p, (;AﬁA and 7 4.
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Consider N non-interacting quantum fields ¢4 (A =1, ..., N) not necessarily scalars.
The Hamiltonian of the system is

where H, depends at most on 3, p, (;AﬁA and 7 4.

The state of the system is W = W, [] 4 pa. Impose Schroedinger equation as before:

ST v | (iwa—FAZea) =0
A \BA

where I:IZ = (W, |HplW,).

Single out 1

[Tes|Ger—Are)=—=c0d | T v8 | (iva—FA3ea)

B#1 A#1 \ B#A,1
and divide both sides by []g ¢

1 .. ~ 1 .. ~
— (i1 — H{p1) = —=—— 11 #8 | (iea—FH3ea)
¥1 [lgn v8 A#1 \ B#A,1
17 /30
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The equations separate:

iv1 — HPp1 = E1e1, Z H ¢ | (ipa — Hipa) = —E1 HSDB
AZ1 \B#A1 B#1

18/30



massive case dhrmerem ke
e el
many fields

many fields

The equations separate:
ip1 — HY o1 = Even, Z H ¢8| (ipa — Hipa) = —E1 HSDB
A#1 \ B#A,1 B#1
The first is a Schroedinger equation for ¢1 only
io1 = (H? + Exl)er
The second is of the same type we started with:
Do I ¢8| (ipa—Hipa) =0
A#1 \ B#A,1

with I:Ii = I:If‘ — E1l. We can then repeat the trick, and separate @2 and so on.
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The equations separate:
ip1 — HY o1 = Even, Z H ¢8| (ipa — Hipa) = —E1 HSDB
A#1 \ B#A,1 B#1
The first is a Schroedinger equation for ¢1 only
io1 = (H? + Exl)er
The second is of the same type we started with:
Do I ¢8| (ipa—Hipa) =0
A#1 \ B#A,1

with I:Ii = I:If‘ — E1l. We can then repeat the trick, and separate @2 and so on.
We finally obtain N equations:
ioa = (HS + Eal)pa

E, represents the effective gravitational potential felt by ¢4 due to the presence of
the other fields.
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Since back-reaction of matter on geometry is negligible, we set E4 = 0. Then the
equations decouple:
iva=Hipea VA=1,..,N
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For every A separately, we compare the equation for ¢4 with QFT on QST for the
same ¢,, reading off the algebraic equations and solving them.
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massive case dhrmerem ke
e el
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many fields

Since back-reaction of matter on geometry is negligible, we set E4 = 0. Then the

equations decouple: R
iva=Hipea VA=1,..,N

For every A separately, we compare the equation for ¢4 with QFT on QST for the
same ¢,, reading off the algebraic equations and solving them.

Interpretation: dynamics of N non-interacting quantum fields ¢4 on quantum
spacetime W, is equivalent to dynamics of the same fields on a 2-parameters family of
effective spacetimes

dsp = —N2 , d72 + a5, d%°,  Naj=aj,

19/30
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The model: m? inflaton minimally coupled to gravity

4 1 v 722
S= /dxF(16GR+2g“8¢6¢>+ ¢>>
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The model: m? inflaton minimally coupled to gravity

4 1 v 722
S= /dxF<16GR+2g“8¢6¢>+ ¢>>

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):
e matter: ¢ — ¢, 7

e geometry: guy — Qap, P
Constraints: scalar C and vector Cj,.

ab
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kinematics

The model: m? inflaton minimally coupled to gravity
1
S= [ d*xv= R " 0,40, ¢+ = mPp?
[ dxVE (1 R+ 58" 0000 + jmio
Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):
e matter: ¢ — ¢, 7

e geometry: guy — Qap, P
Constraints: scalar C and vector Cj,.
Decomposition in homogeneous isotropic part plus “the rest”:

¢ = ¢o + 00, dab = 3263b +6qap

and similarly for the momenta.

ab
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The model: m? inflaton minimally coupled to gravity
1
R+ 8" 060y ¢>+f m?¢?

5= /d4xr<16 R )

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):
e matter: ¢ — ¢, 7
e geometry: guu — Qap, P
Constraints: scalar C and vector Cj,.
Decomposition in homogeneous isotropic part plus “the rest”:

ab

¢ = ¢o + 00, dab = 3263b +6qap

and similarly for the momenta.
Fourier decomposition of “the rest’:

S(x) — bk, 6Gab(X) = Gm,k
with m=1,2,...,6 and k # 0.
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kinematics

The model: m? inflaton minimally coupled to gravity
1
R+ 8" 060y ¢>+f m?¢?

5= /d4xr<16 R )

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):
e matter: ¢ — ¢, 7
e geometry: guu — Qap, P
Constraints: scalar C and vector Cj,.
Decomposition in homogeneous isotropic part plus “the rest”:

ab

¢ = ¢o + 00, dab = 3263b +6qap

and similarly for the momenta.
Fourier decomposition of “the rest’:

3p(x) — Pk, 09ab(X) = Gm,k

with m=1,2,...,6 and k # 0.
(i) linearization of constraints; (ii) solution of constraints wrt pp, x (m =1,...,4); (iii)
gauge-fixing g, k =0 (m =1,...,4). The only physical degrees of freedom are

e homogeneous isotropic: a, p; ¢o, To

e “the rest” inflaton ¢, m,; two polarization of graviton g, , pi «x and gy k, Px k
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kinematics
physical cosmology dynamics
result

dynamics

Relational time ¢o = True Hamiltonian of the system

Wo\/CoBP)-ﬁ-ZCsa(bkﬂfk + D0 D Cr(@ Gmk Pmk) A

m=+,X k

Cs(a, fbkﬂrk) C1(a, 4m k> Pm,k)
~ v/ Co(a, — 1\ Amo Fm,k/
(a.p +; 2/Colop) g,x 2/Cola.p)
3
:Ho+ZHA
=

where A = 1 for the scalar field ¢ and A = 2,3 for the tensor modes g, of the metric.

1A similar result holds if one uses Mukhanov-Sasaki variables
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Relational time ¢o = True Hamiltonian of the system

Wo\/CoBP)-ﬁ-ZCsa(bkﬂfk + D0 D Cr(@ Gmk Pmk) A

m=+,X k

Cs(a, (bk,ﬂk) C1(a, 4m k> Pm,k)
~ 1/ Co(a,p)+ + — "=
; 2\/C° n;,x 2 C°(‘37p)
3
= Ho + Z HA
A=1
where A = 1 for the scalar field ¢ and A = 2,3 for the tensor modes gm of the metric.
Explicitly:1
Hy = ! Z [72 + (a*K? + a®m?)¢2] Hm = 1 [pz W Fatk?q? k]
2H, P 2H, m m

k

1A similar result holds if one uses Mukhanov-Sasaki variables
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kinematics
physical cosmology dynamics
result

dynamics

Relational time ¢o = True Hamiltonian of the system

wo\/Coap)—&-ZCsa(bk,wk + D0 D Cr(@ Gmk Pmk) A

m=+,X k

X

Cs(a, ¢k,7rk) C1(a, 4m k> Pm,k)
VCol(a,p) + > + — R =
. 2V Col(a k,m§+,x 2/ Co(a, p)

3
“ ot 3
A=1
where A = 1 for the scalar field ¢ and A = 2,3 for the tensor modes gm of the metric.
Explicitly:1
1 1
Hy = 2 4 (2%K2 4 O m? Ho o= [2 +a4k22]
1 2H, zk: [Trk ( )¢ ] m 2H, Pm,k Im, k

Up to H3! factor, these are precisely the Hamiltonians of the toy model presented:

e scalar modes behave as a real is massive field

e tensor modes behave as two real massless fields

1A similar result holds if one uses Mukhanov-Sasaki variables
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result

So we can apply the result for many non-interacting fields, concluding that the
effective metric is

dsi’k = —aﬁA’dez + ai’kdiz
where
a(k/m) ifA=1
Ak = =Nk
’ H, 23°H
(Ho el ) FA=23
(Ho ™)
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kinematics
physical cosmology dynamics
result

result

So we can apply the result for many non-interacting fields, concluding that the
effective metric is

dsi’k = —aﬁA’dez + ai’kdiz
where
a(k/m) ifA=1
apak = A1 A1 %
' w ifA=223

Hence, gravitons move at ¢, while high energy scalar modes at cren = cv/1 + .

= We expect Cerenkov radiation
e from scalar particles into gravitons, if 3 > 0. Bounds from GRB: g < 10—19

e from gravitons into scalar particles, if 3 < 0. Bounds from pulsars: |3| < 102

See Gallego-Torromé, Letizia, Liberati [1507.03205] for details.
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estimation of 3

So, how large is 3 actually? Depends on the quantum gravity theory (for the definition
of geometrical operators) and on the choice of state W.
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estimation of 3

loop quantum cosmology

Let {|v)} be eigenbasis of volume operator # ~ 3. The universe today is best
described by a Gaussian peaked on large volume v, >> 1:

o0
W) = %/0 dv e~V —In(va)/45%| )
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estimation of 3

loop quantum cosmology

Let {|v)} be eigenbasis of volume operator # ~ 3. The universe today is best
described by a Gaussian peaked on large volume v, >> 1:

o0
W) = %/0 dv e~In()—In(vo)2 /452 )

Then evaluation of (3 is straightforward:

A4 N 2
(Wol73]Wo) = (Wol2[Wo)3  _a2/0 7%52

2
(WolP2|Wo)3

8=

where s is the relative dispersion of volume:

s~ Av/(V)

26 /30



estimation of 3

loop quantum cosmology

Let {|v)} be eigenbasis of volume operator # ~ 3. The universe today is best
described by a Gaussian peaked on large volume v, >> 1:

o0
W) = %/0 dv e~In()—In(vo)2 /452 )

Then evaluation of (3 is straightforward:

4 2
(Wol031Wo) = (Wol?Wo)3  _ajo_, . 4o
: ~ ~
(Wol92|V0)3 5

8=
where s is the relative dispersion of volume:
s~ Av/(V)

Remarks:
e (3 < 0: the dressed speed of light cren is less than the bare ¢
o 3 decays quadratically in Av/(?) < 1: tiny QG effect today
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estimation of 3

GFT quantum cosmology

Let |W,) = |o) be a GFT condensate concentrated on a single spin j:

1
oy = Nexp (/ d*g dr U(gl,...,g4,7‘)<,0(g1,...,g4,7')T) |0)

with
4

P 1 i
O'(g17...,g477') :UJ(T) Z ";1-»-m4LlJ1r1...n4H . Djm,-n,-(gf)

my,...,Ng i=1 2J+1
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GFT quantum cosmology

Let |W,) = |o) be a GFT condensate concentrated on a single spin j:

1
oy = NP (/ d*g dr U(gl,...,g4,7')<,0(g1,...,g4,7')T) |0)
with
O—(g17---7g477_):0'j(7—) Z ";1-»-"74";r1...n4H%Djm-n-(gf)
my,..., ng i=1 2J +1 ,,

It is easy to see that, for any function f(v(7)) of T-evolved volume v(7), it is
o .3
(@lf(V())lo) = F(V)loj(T)2, Vi~ Lpyi

which leads to

5 _ (elP3(Dlo) = (o19(r)?[0)3 _ loj(r)? — loj(r)I*/
5=l %L‘&(ﬂ;;?” = A = P -1
1 N 1
~ o el E -1
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estimation of 3

GFT quantum cosmology

Let |W,) = |o) be a GFT condensate concentrated on a single spin j:

1
oy = Nexp (/ d*g dr U(gl,...,g4,7')<,0(g1,...,g4,7')T) |0)

with
4

- 1 )
O—(g17---7g477_):0'j(7—) Z ";1-»-"74";r1...n4HTDJm-n-(gf)
S 2 2j+1 T
my,...,Nna i=1
It is easy to see that, for any function f(v(7)) of T-evolved volume v(7), it is
- .3
(@lf(V())lo) = F(V)loj(T)2, Vi~ Lpyi

which leads to

5 _ (elP3(Dlo) = (o19(r)?[0)3 _ loj(r)? — loj(r)I*/
5=l (<L‘|o>(7)i\i>é)l) = A = P -1
1 N 1
~ o el E -1
Remarks:

e Since j is constant, 3 grows linearly with the size of the Universe!
e Note that this |o) is not the only candidate for cosmological state in GFT
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e mechanism for emergence of continuous spacetime gy, “seen” by the quantum
field when it propagates on isotropic quantum cosmology
* massless scalar field: g, is k-indepedent; E? = m* + P?
* massive scalar field: guv is k-dependent; E2 = m? +V1+ BP?

with “refractive index” 3 encoding the underlying quantum geometry
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* massless scalar field: g, is k-indepedent; E? = m* + P?
* massive scalar field: guv is k-dependent; E2 = m? +V1+ BP?

with “refractive index” 3 encoding the underlying quantum geometry

extension to Bianchi |: no anisotropies in the deformed dispersion relation

extension to many non-interacting fields
application to physical cosmology

* observational bounds on 3
% estimation of 3 in LQC (passes the test) and GFT (does not)

Outlook:
e in cosmology: consider more realistic potentials; test other candidate QG theories
e matter sector: find the dispersion relation for other species (vectors fields, spinors)

e geometry sector: generalize the mechanism beyond quantum cosmology
% quantum spherical collapse and Black Holes
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