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Seminal paper: Ashtekar, Kaminski and Lewandowski [0901.0933].

H = Ho +
N
2a3

X
k

ˆ
π2

k + a4k2φ2
k
˜

Formally quantize the system (in harmonic time, τ , defined by N = a3):

Ĥ = Ĥo ⊗ Î +
1
2

X
k

h
Î ⊗ π̂2

k + k2â4 ⊗ φ̂2
k

i
acting on Hilbert space H = Hgeom ⊗Hmatt.

Approx: no entanglement between geometry (Ψo ∈ Hgeom) and matter (ϕ ∈ Hmatt)

Ψ(τ) = Ψo(τ)⊗ ϕ(τ), i
d
dτ
|Ψo〉 = Ĥo |Ψo〉
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Ĥ = Ĥo ⊗ Î +
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QFT on quantum spacetime:

i
d
dτ
|ϕ〉 =

1
2

X
k

h
π̂2

k + 〈Ψo |â4|Ψo〉k2φ̂2
k

i
|ϕ〉

QFT on effective spacetime:

i
d
dt
|ϕ〉 =

1
2

X
k

»
N
a3 π̂

2
k + Nak2φ̂2

k

–
|ϕ〉

Identification leads to

N/a3 = 1, Nak2 = 〈Ψo |â4|Ψo〉k2

whose unique solution is

N(τ) = a(τ)3, a(τ) = 〈Ψo(τ)|â4|Ψo(τ)〉
1
4
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k + 〈Ψo |â4|Ψo〉k2φ̂2
k

i
|ϕ〉

QFT on effective spacetime:

i
d
dt
|ϕ〉 =

1
2

X
k

»
N
a3 π̂

2
k + Nak2φ̂2

k

–
|ϕ〉

Identification leads to

N/a3 = 1, Nak2 = 〈Ψo |â4|Ψo〉k2
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whose unique solution is

N(τ) = a(τ)3, a(τ) = 〈Ψo(τ)|â4|Ψo(τ)〉
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Interpretation: the dynamics of a massless quantum field φ on quantum spacetime
Ψo is equivalent to the dynamics of φ on effective spacetime

ds2 = −N2dt2 + a2d~x2 = −〈â4〉
3
2 dτ2 + 〈â4〉

1
2 d~x2

Can we generalize?
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A simple generalization, yet enough to:
• bring up deformations of dispersion relations
• have application in physical cosmology

QFT on quantum spacetime:

i
d
dτ
|ϕ〉 =

1
2

X
k

h
1π̂2

k + (〈â4〉k2 + 〈â6〉m2)φ̂2
k

i
|ϕ〉

QFT on classical spacetime:

i
d
dt
|ϕ〉 =

1
2

X
k

»
N
a3 π̂

2
k + (Nak2 + Na3m2)φ̂2

k

–
|ϕ〉

System of 3 equations for unknowns N and a:

N/a3 = 1, Nak2 = 〈â4〉k2, Na3m2 = 〈â6〉m2

No solution!

Two approaches:
1. make the effective mass an unknown (Agullo, Ashtekar, Neslon [1211.1354])
2. put together second and third eq’s (Assanioussi, AD, Lewandowski [1412.6000])
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No solution!

Two approaches:
1. make the effective mass an unknown (Agullo, Ashtekar, Neslon [1211.1354])
2. put together second and third eq’s (Assanioussi, AD, Lewandowski [1412.6000])

8 / 30



introduction
massive case

physical cosmology
estimation of β

conclusions

dispersion relation
anisotropic cosmologies
many fields

A simple generalization, yet enough to:
• bring up deformations of dispersion relations
• have application in physical cosmology

QFT on quantum spacetime:

i
d
dτ
|ϕ〉 =

1
2

X
k

h
1π̂2
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approach 1: 3 equations for 3 unknowns

N/a3 = 1, Nak2 = 〈â4〉k2, Na3m̄2 = 〈â6〉m2

whose unique solution is: a and N as in the massless case, moreover

m̄ =
〈â6〉

1
2

〈â4〉
3
4
m

⇒ Effective mass is a renormalization of m by time-dependent multiplicative factor!

approach 2: 2 equations for 2 unknowns

N/a3 = 1, Nak2/m2 + Na3 = 〈â4〉k2/m2 + 〈â6〉

whose unique solution is

N = a3, a = a(k/m, 〈â4〉, 〈â6〉)

⇒ Effective metric depends on the wavenumber k/m of the mode considered!
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⇒ Effective metric depends on the wavenumber k/m of the mode considered!

9 / 30



introduction
massive case

physical cosmology
estimation of β

conclusions

dispersion relation
anisotropic cosmologies
many fields

approach 1: 3 equations for 3 unknowns
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whose unique solution is

N = a3, a = a(k/m, 〈â4〉, 〈â6〉)
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Interpretation: the dynamics of quantum field φ of mass m on quantum spacetime
Ψo is equivalent to dynamics of the same field on a 1-parameter family of effective
spacetimes

ds2(k) = −N2
kdτ

2 + a2
kd~x

2, Nk = a3
k

g (k)
µν is a rainbow metric, and thus presents modified dispersion relation
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Identify the frame of a classical observer: {uµ, eµi } s.t.
u · u = −1, u · ei = 0, ei · ej = δij

where scalar product is given by the “low energy” metric, i.e., the metric seen by
modes with k � m:

a2
k ≈ a2

o

"
1 +

β

3

„
k/ao

m

«2
#

= a2
o

»
1 +

β

3
P2

m2

–
where

a2
o = 3

q
〈Ψo |â6|Ψo〉, β :=

〈Ψo |â4|Ψo〉

〈Ψo |â6|Ψo〉
2
3
− 1

P2 = δijPiPj = δijkikj/a2
o is the norm of physical momentum Pi := eµi kµ of mode k.

Let E := uµkµ = k0/No be the physical energy of mode k. Then the mass shell is

−m2 = gµν
(k)

kµkν = −
k2
0

N2
k

+

P
i k

2
i

a2
k

= −
k2
0

N2
o

N2
o

N2
k

+
k2

a2
o

a2
o
a2
k

= −E2f 2 + P2g2

where the rainbow functions are

f :=
No

Nk
, g :=

ao

ak
=

No

Nk

a2
k
a2
o

= f
a2
k
a2
o
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Following the analysis of Gallego-Torromé, Letizia, Liberati [1507.03205], we use the
equation satisfied by ak to replace m2a6

k/a
6
o with (〈â4〉k2 + 〈â6〉m2)/a6

o − P2a4
k/a

4
o :

E2 =
1
f 2

`
m2 + g2P2´ =

a6
k
a6
o
m2 +

a4
k
a4
o
P2 =

〈â6〉
a6
o

m2 +
〈â4〉
a4
o

P2 = m2 +
〈â4〉

〈â6〉
2
3
P2

= m2 + (1 + β)P2

where we used ao = 6
p
〈â6〉 and β = 〈â4〉/〈â6〉

2
3 − 1.
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dispersion relation

Parameter β encodes the quantum nature of spacetime

E2 = m2 + (1 + β)P2, β :=
〈Ψo |â4|Ψo〉

〈Ψo |â6|Ψo〉
2
3
− 1

⇒ deformation controlled by parameter β of quantum gravity origin, and amounts to
a renormalization of the speed of light: cren = c

√
1 + β

0 2 4 6 8 10
p�m0.0

0.2

0.4

0.6

0.8

1.0

v

No role of EPl! For β ≈ 0.2 (red line), large deviations from Lorentz (blue line)
already at P ∼ m (for protons, m� EPl). But can we really detect this? How?

13 / 30



introduction
massive case

physical cosmology
estimation of β

conclusions

dispersion relation
anisotropic cosmologies
many fields

dispersion relation

Parameter β encodes the quantum nature of spacetime

E2 = m2 + (1 + β)P2, β :=
〈Ψo |â4|Ψo〉
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anisotropic cosmologies

Bianchi I metric:
ds2 = −N2dt2 +
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Luckily, to study dispersion relation, we do not need any complete solution pi = pi (~k),
but just the low energy limit. Indeed, repeating Liberati’s analysis in this case we find

E2 = m2 + P2 +
X

i

βiP2
i , βi :=

〈Ψo |p̂2
i |Ψo〉

(po
i )2

− 1

where pi (~k) = po
i + O(~k/m).

In this limit, the equation becomes

po
1p

o
2p

o
3 = 〈p̂1p̂2p̂3〉 =: ω0

which does not uniquely determine po
i . However, observing that po

i may depend only
on ω0 and ωi = 〈p̂i 〉, we impose the following (arguably reasonable) symmetries:
• since ω0 is cyclically symmetric in p̂’s, we assume that the three po

i depend on ω0
in the same way

• as a function, po
1 depends on ω1, ω2, ω3 in the same way that po

2 depends on
ω2, ω3, ω1, and po

3 on ω3, ω1, ω2

Hence, we have

po
1 = F (ω0, ω1, ω2, ω3), po

2 = F (ω0, ω2, ω3, ω1), po
3 = F (ω0, ω3, ω1, ω2)
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By a dimensional argument it now follows that there are only two possibilities:

1. po
i = ω

1
3
0

2. po
1 = ω

1
3
0 ω

1
3
1 (ω2ω3)−

1
6 , and others cyclical

Solution 1. leads to βi = 〈p2
i 〉/〈p̂1p̂2p̂3〉

2
3 − 1, which for a semiclassical state Ψo gives

βi ≈
〈pi 〉2

〈p̂1〉
2
3 〈p̂2〉

2
3 〈p̂3〉

2
3
− 1

which does not equal 0! So we must discard this solution: wrong classical limit.

Solution 2. leads to the correct classical limit, but all three βi coincide:

β ≡ βi =
〈p2

1〉
1
3 〈p2

2〉
1
3 〈p2

3〉
1
3

〈p̂1p̂2p̂3〉
2
3

− 1

Remarks:
• isotropic deformation of dispersion relation
• β depends on quantum anisotropies
• consistent with isotropic case, when p̂1|Ψo〉 = p̂2|Ψo〉 = p̂3|Ψo〉
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Consider N non-interacting quantum fields φA (A = 1, ...,N) not necessarily scalars.
The Hamiltonian of the system is

Ĥ = Ĥo +
X
A

ĤA

where ĤA depends at most on â, p̂, φ̂A and π̂A.

The state of the system is Ψ = Ψo
Q

A ϕA. Impose Schroedinger equation as before:

X
A

0@Y
B 6=A

ϕB

1A (iϕ̇A − Ĥo
AϕA) = 0

where Ĥo
A := 〈Ψo |ĤA|Ψo〉.

Single out ϕ10@Y
B 6=1

ϕB

1A (iϕ̇1 − Ĥo
1ϕ1) = −ϕ1

X
A6=1

0@ Y
B 6=A,1

ϕB

1A (iϕ̇A − Ĥo
AϕA)

and divide both sides by
Q

B ϕB

1
ϕ1

(iϕ̇1 − Ĥo
1ϕ1) = −

1Q
B 6=1 ϕB

X
A 6=1

0@ Y
B 6=A,1

ϕB

1A (iϕ̇A − Ĥo
AϕA)
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Ĥ = Ĥo +
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The equations separate:

iϕ̇1 − Ĥo
1ϕ1 = E1ϕ1,

X
A6=1

0@ Y
B 6=A,1

ϕB

1A (iϕ̇A − Ĥo
AϕA) = −E1

Y
B 6=1

ϕB

The first is a Schroedinger equation for ϕ1 only

iϕ̇1 = (Ĥo
1 + E1 Î )ϕ1

The second is of the same type we started with:

X
A6=1

0@ Y
B 6=A,1

ϕB

1A (iϕ̇A − Ĥ1
AϕA) = 0

with Ĥ1
A := Ĥo

A − E1 Î . We can then repeat the trick, and separate ϕ2 and so on.
We finally obtain N equations:

iϕ̇A = (Ĥo
A + EA Î )ϕA

EA represents the effective gravitational potential felt by ϕA due to the presence of
the other fields.

18 / 30
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Since back-reaction of matter on geometry is negligible, we set EA = 0. Then the
equations decouple:

iϕ̇A = Ĥo
AϕA ∀A = 1, ...,N

For every A separately, we compare the equation for φA with QFT on QST for the
same φA, reading off the algebraic equations and solving them.

Interpretation: dynamics of N non-interacting quantum fields φA on quantum
spacetime Ψo is equivalent to dynamics of the same fields on a 2-parameters family of
effective spacetimes

ds2A,k = −N2
A,kdτ

2 + a2
A,kd~x

2, NA,k = a3
A,k

19 / 30
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kinematics

The model: m2 inflaton minimally coupled to gravity

S =

Z
d4x
√
−g
„

1
16πG

R +
1
2
gµν∂µφ∂νφ+

1
2
m2φ2

«

Canonical formulation (details in AD, Lewandowski and Puchta [1302.3038]):
• matter: φ → φ, π

• geometry: gµν → qab, pab

Constraints: scalar C and vector Ca.
Decomposition in homogeneous isotropic part plus “the rest”:

φ = φo + δφ, qab = a2δab + δqab

and similarly for the momenta.
Fourier decomposition of “the rest”:

δφ(x)→ φk , δqab(x)→ qm,k

with m = 1, 2, ..., 6 and k 6= 0.
(i) linearization of constraints; (ii) solution of constraints wrt pm,k (m = 1, ..., 4); (iii)
gauge-fixing qm,k = 0 (m = 1, ..., 4). The only physical degrees of freedom are
• homogeneous isotropic: a, p; φo , πo

• “the rest”: inflaton φk , πk ; two polarization of graviton q+,k , p+,k and q×,k , p×,k
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δφ(x)→ φk , δqab(x)→ qm,k

with m = 1, 2, ..., 6 and k 6= 0.
(i) linearization of constraints; (ii) solution of constraints wrt pm,k (m = 1, ..., 4); (iii)
gauge-fixing qm,k = 0 (m = 1, ..., 4). The only physical degrees of freedom are
• homogeneous isotropic: a, p; φo , πo

• “the rest”: inflaton φk , πk ; two polarization of graviton q+,k , p+,k and q×,k , p×,k
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dynamics

Relational time φo ⇒ True Hamiltonian of the system

πo =

s
Co(a, p) +

X
k

CS (a, φk , πk) +
X

m=+,×

X
k

CT (a, qm,k , pm,k) ≈

≈
p

Co(a, p) +
X
k

CS (a, φk , πk)

2
p

Co(a, p)
+

X
k,m=+,×

CT (a, qm,k , pm,k)

2
p

Co(a, p)
=

= Ho +
3X

A=1

HA

where A = 1 for the scalar field φ and A = 2, 3 for the tensor modes qm of the metric.

Explicitly:1

H1 =
1

2Ho

X
k

ˆ
π2

k + (a4k2 + a6m2)φ2
k
˜
, Hm =

1
2Ho

X
k

h
p2
m,k + a4k2q2

m,k

i
Up to H−1

o factor, these are precisely the Hamiltonians of the toy model presented:

• scalar modes behave as a real is massive field

• tensor modes behave as two real massless fields

1A similar result holds if one uses Mukhanov-Sasaki variables
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So we can apply the result for many non-interacting fields, concluding that the
effective metric is

ds2A,k = −a6
A,kdτ

2 + a2
A,kd~x

2

where

aA,k =

8>>>><>>>>:
a(k/m) if A = 1

24 〈Ĥ− 1
2

o â4Ĥ
− 1

2
o 〉

〈Ĥ−1
o 〉

35 1
4

if A = 2, 3

Hence, gravitons move at c, while high energy scalar modes at cren = c
√
1 + β.

⇒ We expect Cerenkov radiation
• from scalar particles into gravitons, if β > 0. Bounds from GRB: β . 10−19

• from gravitons into scalar particles, if β < 0. Bounds from pulsars: |β| . 10−2

See Gallego-Torromé, Letizia, Liberati [1507.03205] for details.
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So, how large is β actually? Depends on the quantum gravity theory (for the definition
of geometrical operators) and on the choice of state Ψo .
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loop quantum cosmology

Let {|v〉} be eigenbasis of volume operator v̂ ∼ â3. The universe today is best
described by a Gaussian peaked on large volume vo � 1:

|Ψo〉 =
1
N

Z ∞
0

dv e−[ln(v)−ln(vo )]2/4s2 |v〉

Then evaluation of β is straightforward:

β =
〈Ψo |v̂

4
3 |Ψo〉 − 〈Ψo |v̂2|Ψo〉

2
3

〈Ψo |v̂2|Ψo〉
2
3

≈ e−4s2/9 − 1 ≈ −
4
9
s2

where s is the relative dispersion of volume:

s ≈ ∆v/〈v̂〉

Remarks:

• β < 0: the dressed speed of light cren is less than the bare c

• β decays quadratically in ∆v/〈v̂〉 � 1: tiny QG effect today
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GFT quantum cosmology

Let |Ψo〉 = |σ〉 be a GFT condensate concentrated on a single spin j :

|σ〉 =
1
N

exp
„Z

d4g dτ σ(g1, ..., g4, τ)ϕ(g1, ..., g4, τ)†
«
|0〉

with

σ(g1, ..., g4, τ) = σj (τ)
X

m1,...,n4

ι+m1...m4 ι
+
n1...n4

4Y
i=1

1
2j + 1

D j
mi ni

(gi )

It is easy to see that, for any function f (v(τ)) of τ -evolved volume v(τ), it is

〈σ|f (v̂(τ))|σ〉 = f (Vj )|σj (τ)|2, Vj ∼ `3Pl j
3
2

which leads to

β =
〈σ|v̂

4
3 (τ)|σ〉 − 〈σ|v̂(τ)2|σ〉

2
3

〈σ|v̂(τ)2|σ〉
2
3

=
|σj (τ)|2 − |σj (τ)|4/3

|σj (τ)|4/3
= |σj (τ)|2/3 − 1 ∼

∼
1

`Pl
√
j
〈σ|v̂(τ)|σ〉

1
3 − 1

Remarks:
• Since j is constant, β grows linearly with the size of the Universe!
• Note that this |σ〉 is not the only candidate for cosmological state in GFT
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What I presented:

• mechanism for emergence of continuous spacetime gµν “seen” by the quantum
field when it propagates on isotropic quantum cosmology
∗ massless scalar field: gµν is k-indepedent; E2 = m2 + P2

∗ massive scalar field: gµν is k-dependent; E2 = m2 +
√
1 + βP2

with “refractive index” β encoding the underlying quantum geometry
• extension to Bianchi I: no anisotropies in the deformed dispersion relation
• extension to many non-interacting fields
• application to physical cosmology

∗ observational bounds on β
∗ estimation of β in LQC (passes the test) and GFT (does not)

Outlook:
• in cosmology: consider more realistic potentials; test other candidate QG theories
• matter sector: find the dispersion relation for other species (vectors fields, spinors)
• geometry sector: generalize the mechanism beyond quantum cosmology

∗ quantum spherical collapse and Black Holes
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