Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Nonminimally coupled Scalar Field in Loop Quantum Cosmology

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Stockholm, 6th July 2012

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

1 Introduction

2 Quantization

3 Analysis

Outline

・ロト・雪・・雪・・雪・・ つくで

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

1 Introduction

2 Quantization

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Nonminimal Scalar Field

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

$$S[g_{\mu\nu},\phi] = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \left[-U(\phi)R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) \right]$$

Nonminimal coupling:

$$U = \frac{1}{2}(1 + \xi \phi^2)$$

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Nonminimal Scalar Field

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

$$S[g_{\mu\nu},\phi] = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \left[-U(\phi)R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) \right]$$

Nonminimal coupling:

$$U = \frac{1}{2}(1 + \xi \phi^2)$$

• Reduction to Cosmology: $g_{\mu\nu} \rightarrow a$

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Nonminimal Scalar Field

$$S[g_{\mu\nu},\phi] = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \left[-U(\phi)R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - V(\phi) \right]$$

Nonminimal coupling:

$$U = \frac{1}{2}(1 + \xi \phi^2)$$

- Reduction to Cosmology: $g_{\mu\nu} \rightarrow a$
- Canonical analysis: Hamiltonian Constraint

 $H = -6U'\dot{\phi}\dot{a}a^2 - 6U\dot{a}^2a + a^38\pi G\rho = 0$

イロト (同) (ヨ) (ヨ) (つ) (つ)

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Why nonminimal?

イロト (同) (ヨ) (ヨ) (つ) (つ)

 $\ddot{\phi} + 3H\dot{\phi} = \frac{2U'V - UV' - U'\dot{\phi}^2(3U'' + \frac{1}{2})}{U + 3U'^2}$

Equation of motion for ϕ :

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantizatio

Analysis

Why nonminimal?

イロト (同) (ヨ) (ヨ) (つ) (つ)

Equation of motion for ϕ :

$$\ddot{\phi} + 3H\dot{\phi} = \frac{2U'V - UV' - U'\dot{\phi}^2(3U'' + \frac{1}{2})}{U + 3U'^2}$$

Minimal case:

$$\ddot{\phi} + 3H\dot{\phi} = -V' = -m^2\phi$$

 \Rightarrow inflation drived by a fine-tuned heavy field: $\phi_{in} \approx m_{\rm Pl}, m \approx 10^{-6} m_{\rm Pl}$

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantizatio

Analysis

Why nonminimal?

イロト (同) (ヨ) (ヨ) (つ) (つ)

Equation of motion for ϕ :

$$\ddot{\phi} + 3H\dot{\phi} = \frac{2U'V - UV' - U'\dot{\phi}^2(3U'' + \frac{1}{2})}{U + 3U'^2}$$

Minimal case:

$$\ddot{\phi} + 3H\dot{\phi} = -V' = -m^2\phi$$

 \Rightarrow inflation drived by a fine-tuned heavy field: $\phi_{in} \approx m_{\text{Pl}}, m \approx 10^{-6} m_{\text{Pl}}$

Nonminimal case:

$$U(\phi)R + V = \frac{1}{2}R + \frac{1}{2}\phi^2(\xi R + m^2) = \mathcal{L}_{\rm gr} + \frac{1}{2}\phi^2 m_{\rm eff}^2$$

 \Rightarrow Inflation can be driven by a light scalar field.

Michal Artymowski,

Quantization Scheme

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Andrea Dapor, Tomasz Pawlowski Introduction

Higgs-based model:

$$V = \frac{\lambda}{4}\phi^4$$

with

 $\xi \approx 47000 \, \sqrt{\lambda}, \qquad \lambda = 0.5$

Michal Artymowski,

Quantization Scheme

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

Andrea Dapor, Tomasz Pawlowski Introduction

Higgs-based model:

$$V = \frac{\lambda}{4}\phi^4$$

with

$$\xi \approx 47000 \sqrt{\lambda}, \quad \lambda = 0.5$$

\rightarrow canonical transformation to the minimal form

Michal

Quantization Scheme

イロト (同) (ヨ) (ヨ) (つ) (つ)

Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Analysis

Higgs-based model:

$$V = \frac{\lambda}{4}\phi^4$$

with

$$\xi \approx 47000 \sqrt{\lambda}, \quad \lambda = 0.5$$

- \rightarrow canonical transformation to the minimal form
- \rightarrow standard loop quantization

Michal Artymowski,

Quantization Scheme

イロト (同) (ヨ) (ヨ) (つ) (つ)

Andrea Dapor, Tomasz Pawlowski Introduction

Higgs-based model:

$$V = \frac{\lambda}{4}\phi^4$$

with

$$\xi \approx 47000 \sqrt{\lambda}, \quad \lambda = 0.5$$

- \rightarrow canonical transformation to the minimal form
- \rightarrow standard loop quantization
- \rightarrow effective limit

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Introduction

2 Quantization

3 Analysis

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Canonical Transformation

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

$$\tilde{g}_{\mu\nu} = 2Ug_{\mu\nu}, \quad \left(\frac{d\tilde{\phi}}{d\phi}\right)^2 = \frac{U+3U'^2}{2U^2}$$

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Canonical Transformation

$$\widetilde{g}_{\mu\nu} = 2Ug_{\mu\nu}, \quad \left(\frac{d\widetilde{\phi}}{d\phi}\right)^2 = \frac{U+3U'^2}{2U^2}$$

For this choice

 $S_{NM}[g_{\mu\nu},\phi]=S_M[\tilde{g}_{\mu\nu},\tilde{\phi}]$

where the potential of field $\tilde{\phi}$ in S_M is given by

$$\tilde{V} = \frac{V}{4U^2}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

The "non-minimality" is absorbed in the effective potential \tilde{V} .

Í

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Loop Quantization

イロト (同) (ヨ) (ヨ) (つ) (つ)

Change to variables

$$\operatorname{sgn}(\tilde{v})\tilde{v} = \frac{\tilde{a}^3}{2\pi\gamma\sqrt{\Delta}\ell_{\rm Pl}^2}, \quad \tilde{b} = -\gamma\sqrt{\Delta}\frac{1}{\tilde{a}}\frac{d\tilde{a}}{d\tilde{t}}$$

where γ is Barbero-Immirzi parameter and $\Delta = 4\pi\gamma \sqrt{3}\ell_{\text{Pl}}^2$ is "area gap".

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantizatio

Change to variables

$$\operatorname{sgn}(\tilde{v})\tilde{v} = \frac{\tilde{a}^3}{2\pi\gamma\sqrt{\Delta}\ell_{\rm Pl}^2}, \quad \tilde{b} = -\gamma\sqrt{\Delta}\frac{1}{\tilde{a}}\frac{d\tilde{a}}{d\tilde{t}}$$

where γ is Barbero-Immirzi parameter and $\Delta = 4\pi\gamma \sqrt{3}\ell_{\text{Pl}}^2$ is "area gap".

Follow standard LQC:

 $-i\hbar\partial_{\tilde{t}}\Psi(\tilde{v},\tilde{\phi}) = \left[\frac{3\pi G}{8\alpha}\sqrt{|\hat{v}|}\left(\hat{N}^2 - \hat{N}^{-2}\right)^2\sqrt{|\hat{v}|} + \frac{1}{2\alpha}|\hat{v}|^{-1}\hat{\pi}_{\tilde{\phi}}^2 + \frac{\alpha}{\hbar}|\hat{v}|\tilde{V}\right]\Psi(\tilde{v},\tilde{\phi})$ where " $\hat{N} = e^{i\hat{b}/2}$ " and $\alpha = 2\pi\gamma\sqrt{\Delta}\ell_{\rm Pl}^2$.

Loop Quantization

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Effective Limit

(日)

Substitute the fundamental (observable) operators $\hat{\phi}, \hat{\pi}_{\phi}, \hat{\hat{v}}, \hat{\hat{N}}$ with their expectation values:

$$H_{eff} = -\frac{3\pi G}{2\alpha} |\tilde{v}| \sin^2(\tilde{b}) + \frac{\pi_{\tilde{\phi}}^2}{2\alpha |\tilde{v}|} + \frac{\alpha}{\hbar} |\tilde{v}|\tilde{V}$$

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Effective Limit

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Substitute the fundamental (observable) operators $\hat{\phi}$, $\hat{\pi}_{\phi}$, $\hat{\hat{v}}$, $\hat{\hat{N}}$ with their expectation values:

$$H_{eff} = -\frac{3\pi G}{2\alpha} |\tilde{\nu}| \sin^2(\tilde{b}) + \frac{\pi_{\tilde{\phi}}^2}{2\alpha |\tilde{\nu}|} + \frac{\alpha}{\hbar} |\tilde{\nu}| \tilde{V}$$

The effective dynamics (with respect to \tilde{t}) is obtained from Hamilton equations, with initial conditions

$$\tilde{b} = \pi/2, \quad \tilde{v} = 1, \quad \tilde{\phi} = \tilde{\phi}_{in}, \quad \pi_{\tilde{\phi}} = \pi_{\tilde{\phi}}(\tilde{v}, \tilde{b}, \tilde{\phi})$$

The solutions are parametrized by a single value: $\tilde{\phi}_{in}$.

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analys

Effective Limit

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Substitute the fundamental (observable) operators $\hat{\phi}$, $\hat{\pi}_{\phi}$, $\hat{\hat{v}}$, $\hat{\hat{N}}$ with their expectation values:

$$H_{eff} = -\frac{3\pi G}{2\alpha} |\tilde{\nu}| \sin^2(\tilde{b}) + \frac{\pi_{\tilde{\phi}}^2}{2\alpha |\tilde{\nu}|} + \frac{\alpha}{\hbar} |\tilde{\nu}| \tilde{V}$$

The effective dynamics (with respect to \tilde{t}) is obtained from Hamilton equations, with initial conditions

$$\tilde{b} = \pi/2, \quad \tilde{v} = 1, \quad \tilde{\phi} = \tilde{\phi}_{in}, \quad \pi_{\tilde{\phi}} = \pi_{\tilde{\phi}}(\tilde{v}, \tilde{b}, \tilde{\phi})$$

The solutions are parametrized by a single value: $\tilde{\phi}_{in}$.

Numerically simulate the evolution, and transform back to non-tilded quantities.

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

1 Introduction

2 Quantization

Outline

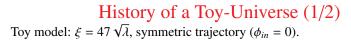
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

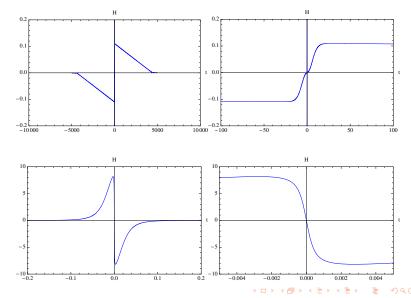
Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantizatio

Analysis





Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

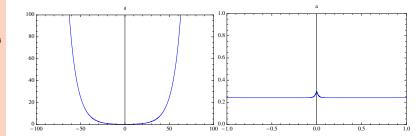
Introductio

Quantizati

Analysis

History of a Toy-Universe (2/2)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで



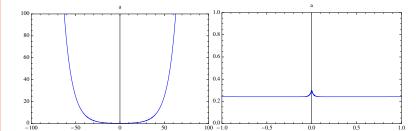
Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

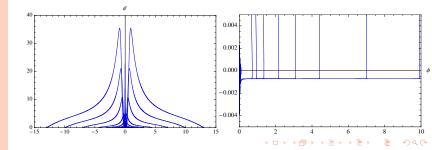
Introductio

Quantizati

Analysis

History of a Toy-Universe (2/2)



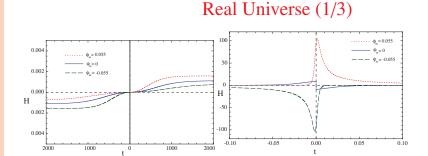


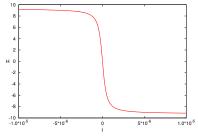
Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

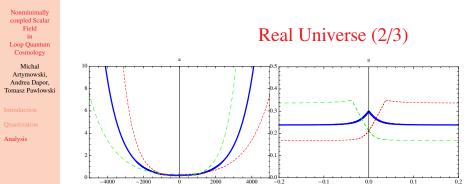
Quantizati

Analysis



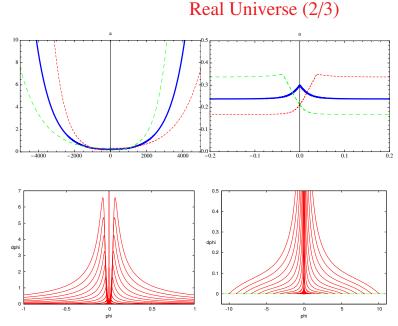


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Analysis

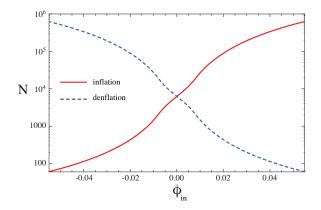


・ロト ・ 理 ト ・ ヨ ト ・

Real Universe (3/3)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

æ



Nonminimally coupled Scalar Field in Loop Quantum Cosmology

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantizatio

Analysis

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

Conclusions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

Nonminimally coupled Scalar Field in Loop Quantum Cosmology

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Introduction

Quantization

Analysis

• The very successful model of non-minimal scalar field admits a simple LQC analogue.

Conclusions

イロト (同) (ヨ) (ヨ) (つ) (つ)

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Nonminimally coupled Scalar Field

in Loop Quantum

Introduction

Quantization

Analysis

- The very successful model of non-minimal scalar field admits a simple LQC analogue.
- The LQC-corrected model preserves the usual properties of the classical one: highly probable inflation, driven from light scalar field.

Conclusions

イロト (同) (ヨ) (ヨ) (つ) (つ)

Michal Artymowski, Andrea Dapor, Tomasz Pawlowski

Nonminimally coupled Scalar Field

in Loop Quantum

Introduction

Quantization

Analysis

- The very successful model of non-minimal scalar field admits a simple LQC analogue.
- The LQC-corrected model preserves the usual properties of the classical one: highly probable inflation, driven from light scalar field.
- The LQC-corrected model presents the usual properties of LQC models: resolution of singularity, which is substituted by a (qualitatively new form of) Big Bounce.