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Phase velocity (velocity of a plane wave of wavevector k)

v(k) =
c

n(k)

with n refractive index.

Relation between v(k) and ω(k):

v(k) =
ω(k)

k

So, using E = ~ω and p = ~k, we find

E2 = ~2ω(k)2 = ~2k2v(k)2 = c2p2 1
n(k)2

Simple example: n = (1 + β)−1/2, with β independent of k. Then

E2 = c2p2(1 + β)

Theoretical community: “What is the meaning of β? Where does it come from?”
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E2 = c2p2(1 + β)(1)

Theoretical physicist 1: “Relation (1) is very similar to another relation, the mass-shell,
that comes from some very fundamental facts of Minkowski spacetime.”

E2 = c2p2 + c4m2

Comparison with (1) leads to
m =

√
β
p
c

Theoretical physicist 1: “The spacetime is vacuum Minkowski, while photons have a
p-dependent (and possibly t-dependent) mass m.”

Theoretical physicist 2: “I don’t like that m depends on p. I can derive (1) from mass
shell of massless photons on a Robertson-Walker spacetime.”

ds2 = −dt2 + a2dx2

implies 0 = gµνpµpν = −E2 + c2p2/a2, so

E2 =
1
a2 c

2p2

Comparison with (1) leads to
a = (1 + β)−1/2

Theoretical physicist 2: “The spacetime is vacuum Robertson-Walker, while photons
are massless.” 4 / 20
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Who is right? Fundamentally, neither. In reality, photons are massless but space is not
empty:

Being slowed down by the interaction, it appears as though they have mass or as
though the metric of spacetime is not Minkowski.

However: as far as the phenomenology is concerned, both theories are equally good.
They explain the result of the experiment and, if no other experiment is available, it is
impossible to tell which one is the “right” one.
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Seminal paper [Ashtekar, Kaminski, Lewandowski (2009)].

Classical Hamiltonian of the system (can be derived from cosmological perturbation
theory [AD, Lewandowski, Puchta (2013)]):

H = Ho +
∑
k

Hk

where Ho is the function of scale factor a and its conjugated momentum pa, while

Hk =
H−1

o

2

[
π2

k + a4k2φ2
k
]

A collection of harmonic oscillators with t-dependent frequency.
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Formal quantization:

Ĥ = Ĥo ⊗ Î +
1
2

∑
k

[
Ĥ−1

o ⊗ π̂2
k + Ĥ−1

o a4k2 ⊗ φ̂2
k

]

acting on Hilberts space of the system H = Ho ⊗HM . (Explicit: hybrid quantization
[Castelló Gomar, Fernández-Méndez, Martin-Benito, Mena Marugán, Olmedo, ...].)

Corresponding Schroedinger equation on the state Ψ ∈ H of the system:

i
d
dt

Ψ = Ĥo ⊗ ÎΨ +
1
2

∑
k

[
Ĥ−1

o ⊗ π̂2
k + Ĥ−1

o a4k2 ⊗ φ̂2
k

]
Ψ

Test field approximation: Ψ = Ψo ⊗ ϕ with ϕ ∈ HM and Ψo ∈ Ho satisfying

i
d
dt

Ψo = ĤoΨo

Strong approximation! Beyond it, see [Stottmeister, Thiemann (2015)].
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Schroedinger equation for QFT on QS:

i
d
dt
ϕ =

1
2

∑
k

[
〈Ψo |Ĥ−1

o |Ψo〉π̂2
k + 〈Ψo |Ĥ−1

o a4|Ψo〉k2φ̂2
k

]
ϕ(2)

Observation – The same Schroedinger equation is obtained from another system:
massless scalar field on a classical R-W geometry ds2 = −N̄2dt2 + ā2δijdx idx j .

Schroedinger equation for QFT on CS:

i
d
dt
ϕ =

N̄
2ā3

∑
k

[
π̂2

k + ā4k2φ̂2
k

]
ϕ(3)

Comparing (2) and (3) leads to

〈Ĥ−1
o 〉 =

N̄
ā3 , 〈Ĥ−1

o a4〉 = N̄ā

which admits unique solution

N̄ =

[
〈Ĥ−1

o 〉
1
3 〈Ĥ−1

o a4〉
] 3
4
, ā =

[
〈Ĥ−1

o a4〉/〈Ĥ−1
o 〉

] 1
4
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Result – Instead of talking of QFT on quantum cosmological spacetime, we can talk
of QFT on a classical cosmological spacetime whose line element is

ds2 = −
[
〈Ĥ−1

o 〉
1
3 〈Ĥ−1

o a4〉
] 3
2
dt2 +

 〈Ĥ−1
o a4〉
〈Ĥ−1

o 〉

 1
2

δijdx idx j

Aside: why doing that?
• we can import techniques from QFT on curved spacetimes
• application to physical cosmology, with modifications to CMB power spectrum

[Agullo, Ashtekar, Nelson (2013)]
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Repeat the analysis for massive field. QFT on QS:

i
d
dt
ϕ =

1
2

∑
k

[
〈Ĥ−1

o 〉π̂2
k +

(
〈Ĥ−1

o a4〉k2 + 〈Ĥ−1
o a6〉m2

)
φ̂2

k

]
ϕ(4)

QFT on CS:

i
d
dt
ϕ =

N̄
2ā3

∑
k

[
π̂2

k +
(
ā4k2 + ā6m2) φ̂2

k

]
ϕ(5)

Comparing (4) and (5) leads to

〈Ĥ−1
o 〉 =

N̄
ā3 , 〈Ĥ−1

o a4〉 = N̄ā 〈Ĥ−1
o a6〉 = N̄ā3

which has no solution.

A way out: effective mass m̄ different from m. Then

〈Ĥ−1
o 〉 =

N̄
ā3 , 〈Ĥ−1

o a4〉 = N̄ā 〈Ĥ−1
o a6〉m2 = N̄ā3m̄2

which admits a unique solution

N̄ =

[
〈Ĥ−1

o 〉
1
3 〈Ĥ−1

o a4〉
] 3
4
, ā =

 〈Ĥ−1
o a4〉
〈Ĥ−1

o 〉

 1
4

, m̄ = m

 〈Ĥ−1
o 〉

1
2 〈Ĥ−1

o a6〉

〈Ĥ−1
o a4〉

3
2

 1
2
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Can we find a solution without dressing the mass? Yes [Assanioussi, AD, Lewandowski
(2014)]. Recall

i
d
dt
ϕ =

1
2
∑

k

[
〈Ĥ−1

o 〉π̂2
k +

(
〈Ĥ−1

o a4〉k2 + 〈Ĥ−1
o a6〉m2

)
φ̂2

k

]
ϕ

i
d
dt
ϕ =

1
2
∑

k

[
N̄
ā3 π̂

2
k +

(
N̄āk2 + N̄ā3m2) φ̂2

k

]
ϕ

They coincide if

〈Ĥ−1
o 〉 =

N̄
ā3 , 〈Ĥ−1

o a4〉k2 + 〈Ĥ−1
o a6〉m2 = N̄āk2 + N̄ā3m2

which admits unique solution (too complicated to write). Crucial difference: ā not
only depends on some expectation values, but also on the ratio k/m.

Result – Instead of talking of QFT on quantum cosmological spacetime, we can talk
of QFT on a 1-parameter family of spacetimes:

ds2k = −〈Ĥ−1
o 〉2ā6

kdt
2 + ā2

kδijdx
idx j
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This is an example of rainbow metric [Amelino-Camelia, Magueijo, Smolin, ...] breaking
local Lorentz-symmetry:

E2 =
1
f 2

(
m2 + g2p2)

where E and p are the energy and 3-momentum of a particle of wavevector kµ as
measured by an observer uµ (for which the metric is āk=0).

Rainbow functions f and g in this case are

f =

(
ā0

āk

)3
, g =

ā0

āk

It was shown [Gallego Torrome, Letizia, Liberati (2015)] that the dispersion relation is

E2 = m2 + (1 + β)p2

where

β :=
〈Ĥ−1

o a4〉

〈Ĥ−1
o a6〉

2
3 〈Ĥ−1

o 〉
1
3

− 1

Not simply a redefinition of speed of light, because:
• β in general depends on time
• different fields might have different β’s
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Example: 2 fields, one massless and one massive. The state is Ψ = Ψo ⊗ ϕ1 ⊗ ϕ2 in
H = Ho ⊗H1 ⊗H2. Repeating the analysis, we find Schroedinger equation

i
d
dt
ϕ1 ⊗ ϕ2 =

(∑
k

Ĥ1,kϕ1

)
⊗ ϕ2 + ϕ1 ⊗

(∑
k

Ĥ2,kϕ2

)

with Ĥ1,k and Ĥ2,k massless and massive Hamiltonians respectively:

Ĥ1,k =
1
2

[
〈Ĥ−1

o 〉π̂2
1,k + 〈Ĥ−1

o a4〉k2φ̂2
1,k

]

Ĥ2,k =
1
2

[
〈Ĥ−1

o 〉π̂2
2,k +

(
〈Ĥ−1

o a4〉k2 + 〈Ĥ−1
o a6〉m2

)
φ̂2

2,k

]
Putting the same fields on a classical spacetime of Robertson-Walker type, one finds

i
d
dt
ϕ1 ⊗ ϕ2 =

(∑
k

Ĥ′1,kϕ1

)
⊗ ϕ2 + ϕ1 ⊗

(∑
k

Ĥ′2,kϕ2

)
where

Ĥ′1,k =
N̄
2ā3

[
π̂2

1,k + ā4k2φ̂2
1,k

]
Ĥ′2,k =

N̄
2ā3

[
π̂2

2,k +
(
ā4k2 + ā6m2) φ̂2

2,k

]
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Comparison leads to system of equation with unique “bimetric” solution:

ds2k,λ =


−
[
〈Ĥ−1

o 〉
1
3 〈Ĥ−1

o a4〉
] 3
2
dt2 +

 〈Ĥ−1
o a4〉
〈Ĥ−1

o 〉

 1
2

δijdx idx j if λ = 1

−〈Ĥ−1
o 〉2ā6

kdt
2 + ā2

kδijdx
idx j if λ = 2

Result – Each field sees his own metric: for massless field it is a unique metric (no
Lorentz-violation), while for massive field it is a rainbow metric.

The β parameter therefore reads

β =


0 for massless particles

 〈Ĥ−1
o a4〉3

〈Ĥ−1
o a6〉2〈Ĥ−1

o 〉

 1
3

− 1 for massive particles

Note: β ≈ 0 for semiclassical states ⇒ no such deformations today.

But can we estimate the value of β in time, as we approach Big Bang/Bounce?
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Experimental bounds on β based on cosmology [Gallego Torrome, Letizia, Liberati
(2015)] are

|β| .

 10−15 if β > 0

10−2 if β < 0
(6)

• LQC [Ashtekar, Pawlowski, Singh (2006)]: taking for Ψo a gaussian-like state
peaked on volume vo , one finds

β ≈ −
4
9

(
∆v
vo

)2

⇒ β always negative, and LQC numerics shows it is constant far from bounce
and gets smaller at bounce.
(6) ⇒ ∆v/vo � 0.15.

• GFT (single-spin) cosmology [Gielen, Oriti, Sindoni (2013)]: I cannot compute β,
but (∆v/vo)2 ∼ 1/ρ(φ)2, which grows as the universe shrinks
⇒ potential effects on β close to bounce?
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main message – dressed metrics come with rich phenomenology but many ambiguities

⇒ risky to draw conclusions w/o understanding to what extent the analogy works

Main puzzle: why the two approaches to the massive case produce so different physics?

Meanwhile, “we do what we can”:
• anisotropies: Bianchi I shows isotropic deformation of dispersion relation

[Assanioussi, AD (2016)]

• other symmetry-reduced spacetimes: spherical symmetry [Gambini, Pullin (2013)]

• other fields: spinors [Elizaga Navascués, Martin-Benito, Mena Marugán (2017)]

• full theory: QRLG w/ scalar field [Bilski, Alesci, Cianfrani (2015)]; and soon LQG
[AD, Liegener (2017)]

Finally, on the relation between dressed metrics and rainbow metrics: recent results on
observable effects of deformed dispersion relations.

Thank you for your attention
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extraslide 1: explicit form of āk

In terms of

δ :=
1

〈Ĥ−1
o 〉

[
〈Ĥ−1

o a4〉
k2

m2 + 〈Ĥ−1
o a6〉

]
it is

ā2
k =


u+ + u− − k2

3m2 if 4k6
27m6 ≤ δ

2k2
3m2 cos(θ)−

k2

3m2 if 4k6
27m6 > δ

where

u± :=
3

√√√√ δ

2
−

k6

27m6 ±

√
δ2

4
−

k6

27m6 δ

and

θ :=
1
3
arccos

(
27m6

2k6 δ − 1
)
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extraslide 2: dressed cosmological constant

Divide the 2 fields Schroedinger equation by ϕ1ϕ2:

1
ϕ1

(
i
d
dt
ϕ1

)
−

1
ϕ1

(∑
k

Ĥ1,kϕ1

)
= −

1
ϕ2

(
i
d
dt
ϕ2

)
+

1
ϕ2

(∑
k

Ĥ2,kϕ2

)

Separation of variables gives

i
d
dt
ϕ1 =

∑
k

Ĥ1,kϕ1 + f (Ψo)ϕ1, i
d
dt
ϕ2 =

∑
k

Ĥ2,kϕ2 − f (Ψo)ϕ2

where f (Ψo) is at most a function of Ψo .

These two equations can be obtained from QFT on bimetric Robertson-Walker
spacetime (as before), with the addition of “cosmological constants”:

Λ1 = f (Ψo)

√√√√ 〈Ĥ−1
o 〉

〈Ĥ−1
o a4〉3

, Λ2,k = −
f (Ψo)

N̄k ā3
k
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